Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya 15208, Israel.
Int J Mol Sci. 2023 Nov 9;24(22):16136. doi: 10.3390/ijms242216136.
Obesity and its attendant conditions have become major health problems worldwide, and obesity is currently ranked as the fifth most common cause of death globally. Complex environmental and genetic factors are causes of the current obesity epidemic. Diet, lifestyle, chemical exposure, and other confounding factors are difficult to manage in humans. The mice model is helpful in researching genetic BW gain because genetic and environmental risk factors can be controlled in mice. Studies in mouse strains with various genetic backgrounds and established genetic structures provide unparalleled opportunities to find and analyze trait-related genomic loci. In this study, we used the Collaborative Cross (CC), a large panel of recombinant inbred mouse strains, to present a predictive study using heterozygous 4 knockout profiles of CC mice to understand and effectively identify predispositions to body weight gain. Male C57Bl/6J Smad4+/- mice were mated with female mice from 10 different CC lines to create F1 mice (Smad4+/-x CC). Body weight (BW) was measured weekly until week 16 and then monthly until the end of the study (week 48). The heritability (H2) of the assessed traits was estimated and presented. Comparative analysis of various machine learning algorithms for predicting the BW changes and genotype of mice was conducted. Our data showed that the body weight records of F1 mice with different CC lines differed between wild-type and mutant Smad4 mice during the experiment. Genetic background affects weight gain and some lines gained more weight in the presence of heterozygous Smad4 knockout, while others gained less, but, in general, the mutation caused overweight mice, except for a few lines. In both control and mutant groups, female %BW had a higher heritability (H2) value than males. Additionally, both sexes with wild-type genotypes showed higher heritability values than the mutant group. Logistic regression provides the most accurate mouse genotype predictions using machine learning. We plan to validate the proposed method on more CC lines and mice per line to expand the literature on machine learning for BW prediction.
肥胖及其相关疾病已成为全球主要的健康问题,肥胖目前被列为全球第五大致死原因。复杂的环境和遗传因素是当前肥胖流行的原因。饮食、生活方式、化学暴露和其他混杂因素在人类中难以管理。小鼠模型有助于研究遗传体重增加,因为可以在小鼠中控制遗传和环境风险因素。具有不同遗传背景和既定遗传结构的小鼠品系的研究为发现和分析与性状相关的基因组座提供了无与伦比的机会。在这项研究中,我们使用了协作交叉(CC),这是一个大型重组近交系小鼠品系的面板,使用 CC 小鼠的杂合 4 个缺失突变体的预测性研究来了解和有效识别体重增加的倾向。将 C57Bl/6J Smad4+/- 雄性小鼠与来自 10 个不同 CC 品系的雌性小鼠交配,以创建 F1 小鼠(Smad4+/-x CC)。每周测量体重(BW),直到第 16 周,然后每月测量一次,直到研究结束(第 48 周)。评估性状的遗传力(H2)并进行了呈现。对各种机器学习算法进行了比较分析,以预测 BW 变化和小鼠基因型。我们的数据显示,在实验过程中,具有不同 CC 品系的 F1 小鼠的体重记录在野生型和突变 Smad4 小鼠之间存在差异。遗传背景会影响体重增加,一些品系在存在杂合 Smad4 缺失突变时体重增加更多,而其他品系则体重增加较少,但总体而言,突变导致超重小鼠,除了少数几个品系。在对照组和突变组中,雌性的%BW 具有更高的遗传力(H2)值。此外,具有野生型基因型的雄性和雌性的遗传力值均高于突变组。逻辑回归为使用机器学习对小鼠基因型进行最准确的预测。我们计划在更多的 CC 品系和每条线的更多小鼠上验证所提出的方法,以扩展关于 BW 预测的机器学习文献。