Suppr超能文献

基于导航地图兴趣点的驾驶环境推理:模糊逻辑与机器学习方法

Driving Environment Inference from POI of Navigation Map: Fuzzy Logic and Machine Learning Approaches.

作者信息

Li Yu, Metzner Martin, Schwieger Volker

机构信息

Institute of Engineering Geodesy, University of Stuttgart, Geschwister-Scholl-Str. 24D, 70174 Stuttgart, Germany.

Daimler Truck AG, Fasanenweg 10, 70771 Leinfelden-Echterdingen, Germany.

出版信息

Sensors (Basel). 2023 Nov 13;23(22):9156. doi: 10.3390/s23229156.

Abstract

To adapt vehicle control and plan strategies in a predictive manner, it is usually desired to know the context of a driving environment. This paper aims at efficiently inferring the following five driving environments around vehicle's vicinity: shopping zone, tourist zone, public station, motor service area, and security zone, whose existences are not necessarily mutually exclusive. To achieve that, we utilize the Point of Interest (POI) data from a navigation map as the semantic clue, and solve the inference task as a multilabel classification problem. Specifically, we first extract all relevant POI objects from a map, then transform these discrete POI objects into numerical POI features. Based on these POI features, we finally predict the occurrence of each driving environment via an inference engine. To calculate representative POI features, a statistical approach is introduced. To composite an inference engine, three inference systems are investigated: fuzzy inference system (FIS), support vector machine (SVM), and multilayer perceptron (MLP). In total, we implement 11 variants of inference engine following two inference strategies: independent and unified inference strategies, and conduct comprehensive evaluation on a manually collected dataset. The result shows that the proposed inference framework generalizes well on different inference systems, where the best overall F1 score 0.8699 is achieved by the MLP-based inference engine following the unified inference strategy, along with the fastest inference time of 0.0002 millisecond per sample. Hence, the generalization ability and efficiency of the proposed inference framework are proved.

摘要

为了以预测的方式调整车辆控制并规划策略,通常需要了解驾驶环境的上下文。本文旨在高效推断车辆附近的以下五种驾驶环境:购物区、旅游区、公交站、汽车服务区和安全区,这些区域的存在不一定相互排斥。为实现这一目标,我们利用导航地图中的兴趣点(POI)数据作为语义线索,并将推理任务作为多标签分类问题来解决。具体而言,我们首先从地图中提取所有相关的POI对象,然后将这些离散的POI对象转换为数值型POI特征。基于这些POI特征,我们最终通过推理引擎预测每个驾驶环境的出现情况。为了计算具有代表性的POI特征,引入了一种统计方法。为了构建推理引擎,研究了三种推理系统:模糊推理系统(FIS)、支持向量机(SVM)和多层感知器(MLP)。总共,我们按照两种推理策略(独立推理策略和统一推理策略)实现了11种推理引擎变体,并在一个人工收集的数据集上进行了综合评估。结果表明,所提出的推理框架在不同的推理系统上具有良好的泛化能力,其中基于MLP的推理引擎在统一推理策略下取得了最佳的总体F1分数0.8699,同时每个样本的推理时间最快,为0.0002毫秒。因此,证明了所提出的推理框架的泛化能力和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08fc/10675142/f3b00fdd9d49/sensors-23-09156-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验