Suppr超能文献

使用Levenberg-Marquardt算法对18.5±3兆电子伏特下(α,n)反应截面进行神经网络预测。

Neural network predictions of (α,n) reaction cross sections at 18.5±3 MeV using the Levenberg-Marquardt algorithm.

作者信息

Özdoğan Hasan, Üncü Yiğit Ali, Şekerci Mert, Kaplan Abdullah

机构信息

Antalya Bilim University, Vocational School of Health Services, Department of Medical Imaging Techniques, 07190, Antalya, Turkey.

Akdeniz University, Vocational School of Technical Sciences, Department of Biomedical Equipment Technology, 07070, Antalya, Turkey.

出版信息

Appl Radiat Isot. 2024 Feb;204:111115. doi: 10.1016/j.apradiso.2023.111115. Epub 2023 Nov 20.

Abstract

In recent developments, artificial neural networks (ANNs) have demonstrated their capability to predict reaction cross-sections based on experimental data. Specifically, for predicting (α,n) reaction cross-sections, we meticulously fine-tuned the neural network's performance by optimizing its parameters through the Levenberg-Marquardt algorithm. The effectiveness of this approach is corroborated by notable correlation coefficients; an R-value of 0.90928 for overall correlation, 0.98194 for validation, 0.99981 for testing, and 0.94116 for the comprehensive network prediction. We conducted a rigorous comparison between the results and theoretical computations derived from the TALYS 1.95 nuclear code to validate the predictive accuracy. The mean square error value for artificial neural network results is 7620.92, whereas for TALYS 1.95 calculations, it has been found to be 50,312.74. This comprehensive evaluation process validates the reliability of the ANN based on the Levenberg-Marquardt algorithm in approximating the reaction sections, thus demonstrating its potential for comprehensive investigations. These recent developments confirm the feasibility of using ANN models to gain insight into (α,n) reaction cross-sections.

摘要

在最近的进展中,人工神经网络(ANNs)已展示出基于实验数据预测反应截面的能力。具体而言,为了预测(α,n)反应截面,我们通过Levenberg-Marquardt算法优化神经网络的参数,精心微调了其性能。显著的相关系数证实了这种方法的有效性;总体相关性的R值为0.90928,验证的R值为0.98194,测试的R值为0.99981,综合网络预测的R值为0.94116。我们将结果与从TALYS 1.95核代码得出的理论计算进行了严格比较,以验证预测准确性。人工神经网络结果的均方误差值为7620.92,而对于TALYS 1.95计算,发现其均方误差值为50312.74。这个全面的评估过程验证了基于Levenberg-Marquardt算法的人工神经网络在近似反应截面方面的可靠性,从而证明了其进行全面研究的潜力。这些最新进展证实了使用人工神经网络模型深入了解(α,n)反应截面的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验