Zhang Yaxin, Yang Shanchen, Zhu Ying-Jie, Li Dandan, Cheng Long, Li Heng, Wang Zhaohui
College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China.
J Colloid Interface Sci. 2024 Feb 15;656:566-576. doi: 10.1016/j.jcis.2023.11.132. Epub 2023 Nov 23.
As an emerging electrochemical device, aqueous zinc-ion batteries (ZIBs) present promising potential in safe and large-scale energy storage. However, the large pores of commercial glass fiber (GF) separators result in uneven Zn ion flux, leading to severe dendrite growth issues of Zn metal anodes. Herein, we integrated a multifunctional layer on the GF separator that can synergistically regulate the pore feature and surface property of commercial GF separators. Such modification layer, composed of nanocellulose and SiO nanoparticles, exhibited uniform nanoporous structure and abundant negatively charged polar functional groups. These features allow regulating the distribution of Zn ions at the separator-anode interface, facilitating stable and uniform Zn nucleation and growth. Moreover, the electrostatic interaction between the negatively charged functional groups and Zn ions enhanced the Zn ion transport kinetics, preventing the Zn dendrites formation and adverse reactions. Consequently, the modified electrolyte-filled GF separator showed an increased Zn ion transference number of 0.65. The symmetric Zn//Zn batteries utilizing such a separator achieved an impressive cycling life of 500 h at a high current density/capacity of 10 mA cm/4 mAh cm, nearly nine times longer than the battery using the unmodified GF separator (<55 h). The superior electrochemical performance was verified in both Zn//AC and Zn//LiMnO full battery evaluations. This work presents a novel synergistic modification strategy for developing advanced separators for aqueous ZIBs.
作为一种新兴的电化学装置,水系锌离子电池(ZIBs)在安全和大规模储能方面展现出了广阔的潜力。然而,商用玻璃纤维(GF)隔膜的大孔隙导致锌离子通量不均匀,从而引发锌金属负极严重的枝晶生长问题。在此,我们在GF隔膜上集成了一个多功能层,该层能够协同调节商用GF隔膜的孔隙特征和表面性质。这种由纳米纤维素和SiO纳米颗粒组成的改性层呈现出均匀的纳米多孔结构和丰富的带负电荷的极性官能团。这些特性使得能够调节锌离子在隔膜 - 负极界面处的分布,促进稳定且均匀的锌成核和生长。此外,带负电荷的官能团与锌离子之间的静电相互作用增强了锌离子的传输动力学,防止了锌枝晶的形成和不良反应。因此,改性的充满电解液的GF隔膜的锌离子迁移数提高到了0.65。使用这种隔膜的对称锌//锌电池在10 mA cm/4 mAh cm的高电流密度/容量下实现了令人印象深刻的500小时循环寿命,几乎是使用未改性GF隔膜的电池(<55小时)的九倍。在锌//活性炭和锌//锂锰氧化物全电池评估中均验证了其优异的电化学性能。这项工作提出了一种用于开发先进的水系ZIBs隔膜的新型协同改性策略。