Suppr超能文献

用于柔性光伏应用的CuZnSnS单颗粒层太阳能电池。

CuZnSnS monograin layer solar cells for flexible photovoltaic applications.

作者信息

Kauk-Kuusik Marit, Timmo Kristi, Pilvet Maris, Muska Katri, Danilson Mati, Krustok Jüri, Josepson Raavo, Mikli Valdek, Grossberg-Kuusk Maarja

机构信息

Laboratory of Photovoltaic Materials, Tallinn University of Technology Ehitajate tee 5 Tallinn Estonia

Division of Physics, Tallinn University of Technology Ehitajate tee 5 Tallinn Estonia.

出版信息

J Mater Chem A Mater. 2023 Oct 23;11(44):23640-23652. doi: 10.1039/d3ta04541b. eCollection 2023 Nov 14.

Abstract

Monograin powder technology is one possible path to developing sustainable, lightweight, flexible, and semi-transparent solar cells, which might be ideal for integration with various building and product elements. In recent years, the main research focus of monograin technology has centered around understanding the synthesis and optoelectronic properties of kesterite-type absorber materials. Among these, CuZnSnS (CZTS) stands out as a promising solar cell absorber due to its favorable optical and electrical characteristics. CZTS is particularly appealing as its constituent elements are abundant and non-toxic, and it currently holds the record for highest power conversion efficiency (PCE) among emerging inorganic thin-film PV candidates. Despite its advantages, kesterite solar cells' PCE still falls significantly behind the theoretical maximum efficiency due to the large deficit. This review explores various strategies aimed at improving losses to enhance the overall performance of CZTS monograin layer solar cells. It was found that low-temperature post-annealing of CZTS powders reduced Cu-Zn disordering, increasing by ∼100 meV and values; however, achieving the optimal balance between ordered and disordered regions in kesterite materials is crucial for enhancing photovoltaic device performance due to the coexistence of ordered and disordered phases. CZTS alloying with Ag and Cd suppressed non-radiative recombination and increased short-circuit current density. Optimizing Ag content at 1% reduced Cu antisite defects, but higher Ag levels compensated for acceptor defects, leading to reduced carrier density and decreased solar cell performance. Co-doping with Li and K resulted in an increased bandgap (1.57 eV) and improved , but further optimization is required due to a relatively large difference between measured and theoretical . Heterojunction modifications led to the most effective PCE improvement in CZTS-based solar cells, achieving an overall efficiency of 12.06%.

摘要

单颗粒粉末技术是开发可持续、轻质、柔性和半透明太阳能电池的一条可行途径,这些太阳能电池可能非常适合与各种建筑和产品元件集成。近年来,单颗粒技术的主要研究重点集中在理解锡锌黄铁矿型吸收体材料的合成和光电特性上。其中,CuZnSnS(CZTS)因其良好的光学和电学特性,成为一种很有前景的太阳能电池吸收体。CZTS特别具有吸引力,因为其组成元素丰富且无毒,并且在新兴的无机薄膜光伏候选材料中,它目前保持着最高功率转换效率(PCE)的记录。尽管具有这些优点,但由于存在较大的缺陷,锡锌黄铁矿太阳能电池的PCE仍显著低于理论最大效率。本综述探讨了各种旨在减少损失以提高CZTS单颗粒层太阳能电池整体性能的策略。研究发现,CZTS粉末的低温后退火减少了Cu-Zn无序,使能隙增加了约100 meV,提高了相关值;然而,由于有序相和无序相共存,在锡锌黄铁矿材料中实现有序区域和无序区域之间的最佳平衡对于提高光电器件性能至关重要。CZTS与Ag和Cd合金化抑制了非辐射复合,增加了短路电流密度。将Ag含量优化至1%减少了Cu反位缺陷,但更高的Ag含量补偿了受主缺陷,导致载流子密度降低和太阳能电池性能下降。Li和K共掺杂导致带隙增加(1.57 eV)且有所改善,但由于测量值与理论值之间存在相对较大差异,仍需要进一步优化。异质结改性在基于CZTS的太阳能电池中导致了最有效的PCE提高,实现了12.06%的整体效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验