Suppr超能文献

使用机器学习、临床信息和血清蛋白水平评估卵巢癌复发风险,以预测高级别卵巢癌的生存率。

Ovarian recurrence risk assessment using machine learning, clinical information, and serum protein levels to predict survival in high grade ovarian cancer.

机构信息

Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.

Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.

出版信息

Sci Rep. 2023 Nov 27;13(1):20933. doi: 10.1038/s41598-023-47983-z.

Abstract

In ovarian cancer, there is no current method to accurately predict recurrence after a complete response to chemotherapy. Here, we develop a machine learning risk score using serum proteomics for the prediction of early recurrence of ovarian cancer after initial treatment. The developed risk score was validated in an independent cohort with serum collected prospectively during the remission period. In the discovery cohort, patients scored as low-risk had a median time to recurrence (TTR) that was not reached at 10 years compared to 10.5 months (HR 4.66, p < 0.001) in high-risk patients. In the validation cohort, low-risk patients had a median TTR which was not reached compared to 4.7 months in high-risk patients (HR 4.67, p = 0.009). In advanced-stage patients with a CA125 < 10, low-risk patients had a median TTR of 68 months compared to 6 months in high-risk patients (HR 2.91, p = 0.02). The developed risk score was capable of distinguishing the duration of remission in ovarian cancer patients. This score may help guide maintenance therapy and develop innovative treatments in patients at risk at high-risk of recurrence.

摘要

在卵巢癌中,目前尚无方法能够准确预测化疗完全缓解后的复发。在这里,我们使用血清蛋白质组学开发了一种机器学习风险评分,用于预测初始治疗后卵巢癌的早期复发。该开发的风险评分在收集缓解期前瞻性血清的独立队列中进行了验证。在发现队列中,低危患者的中位复发时间(TTR)未达到 10 年,而高危患者为 10.5 个月(HR 4.66,p<0.001)。在验证队列中,低危患者的中位 TTR 未达到,而高危患者为 4.7 个月(HR 4.67,p=0.009)。在 CA125<10 的晚期患者中,低危患者的中位 TTR 为 68 个月,而高危患者为 6 个月(HR 2.91,p=0.02)。开发的风险评分能够区分卵巢癌患者的缓解持续时间。该评分可能有助于指导高危复发风险患者的维持治疗和开发创新治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a9/10684567/4b7c64badd69/41598_2023_47983_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验