Machaka Ronald, Radingoana Precious M
Independent Researcher, Idya Factory Co., Hamilton, New South Wales 2303, Australia.
Independent Researcher, Pretoria, 0001, South Africa.
Data Brief. 2023 Oct 13;51:109654. doi: 10.1016/j.dib.2023.109654. eCollection 2023 Dec.
This article refers to data derived from a research article entitled "Prediction of narrow HT-SMA thermal hysteresis behaviour using explainable machine learning" [1]. It is based on the knowledge that alloying Ti-Ni-based shape memory alloys (SMAs) with additional ternary or multicomponent elements can alter the SMAs' characteristic transformation temperatures, including the thermal hystereses. Two datasets are reported. The first and primary dataset documents experimental Ti-Ni-based shape memory alloys' high-transformation temperature characteristics reported in the literature. The second auxiliary dataset presented in this article was obtained following the explainable prediction of the narrow high-temperature thermal hysteresis behaviour in Ti-Ni-based high-transformation temperature SMAs (HT-SMAs). The second dataset is intended to generalise and summarise the ML prediction and visualisation of the thermal hysteresis behaviour as also observed experimentally in multiple reports elsewhere. The datasets are provided as supplementary files and the second dataset is also visualised as an intuitive marginal effects plot. We believe that these data will find applications in advancing experimental and theoretical HT-SMA research.
本文引用了一篇名为《使用可解释机器学习预测窄 HT-SMA 热滞行为》[1]的研究文章中的数据。其基于这样的认识:在 Ti-Ni 基形状记忆合金(SMA)中添加额外的三元或多组分元素进行合金化,可以改变 SMA 的特征转变温度,包括热滞。报告了两个数据集。第一个也是主要的数据集记录了文献中报道的实验性 Ti-Ni 基形状记忆合金的高转变温度特性。本文呈现的第二个辅助数据集是在对 Ti-Ni 基高转变温度形状记忆合金(HT-SMA)的窄高温热滞行为进行可解释预测之后获得的。第二个数据集旨在归纳和总结热滞行为的机器学习预测及可视化结果,其他多处的多篇报告中也通过实验观察到了这些结果。数据集作为补充文件提供,第二个数据集还被可视化为直观的边际效应图。我们相信这些数据将在推进 HT-SMA 的实验和理论研究中得到应用。