Xia Xiaojing, Sivonxay Eric, Helms Brett A, Blau Samuel M, Chan Emory M
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Nano Lett. 2023 Dec 13;23(23):11129-11136. doi: 10.1021/acs.nanolett.3c03568. Epub 2023 Dec 1.
The photon upconverting properties of lanthanide-doped nanoparticles drive their applications in imaging, optoelectronics, and additive manufacturing. To maximize their brightness, these upconverting nanoparticles (UCNPs) are often synthesized as core/shell heterostructures. However, the large numbers of compositional and structural parameters in multishell heterostructures make optimizing optical properties challenging. Here, we demonstrate the use of Bayesian optimization (BO) to learn the structure and design rules for multishell UCNPs with bright ultraviolet and violet emission. We leverage an automated workflow that iteratively recommends candidate UCNP structures and then simulates their emission spectra using kinetic Monte Carlo. Yb/Er- and Yb/Er/Tm-codoped UCNP nanostructures optimized with this BO workflow achieve 10- and 110-fold brighter emission within 22 and 40 iterations, respectively. This workflow can be expanded to structures with higher compositional and structural complexity, accelerating the discovery of novel UCNPs while domain-specific knowledge is being developed.
镧系掺杂纳米粒子的光子上转换特性推动了它们在成像、光电子学和增材制造中的应用。为了使其亮度最大化,这些上转换纳米粒子(UCNPs)通常被合成为核/壳异质结构。然而,多壳异质结构中大量的组成和结构参数使得优化光学性能具有挑战性。在这里,我们展示了使用贝叶斯优化(BO)来学习具有明亮紫外和紫光发射的多壳UCNPs的结构和设计规则。我们利用一个自动化工作流程,该流程迭代推荐候选UCNP结构,然后使用动力学蒙特卡罗模拟它们的发射光谱。通过这种BO工作流程优化的Yb/Er和Yb/Er/Tm共掺杂UCNP纳米结构分别在22次和40次迭代内实现了10倍和110倍的更亮发射。该工作流程可以扩展到具有更高组成和结构复杂性的结构,在特定领域知识不断发展的同时加速新型UCNPs的发现。