Suppr超能文献

热解黑碳作为末端电子受体抑制微生物产甲烷。

Pyrogenic Black Carbon Suppresses Microbial Methane Production by Serving as a Terminal Electron Acceptor.

机构信息

Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States.

出版信息

Environ Sci Technol. 2023 Dec 12;57(49):20605-20614. doi: 10.1021/acs.est.3c05830. Epub 2023 Dec 1.

Abstract

Methane (CH) is the second most important greenhouse gas, 27 times as potent as CO and responsible for >30% of the current anthropogenic warming. Globally, more than half of CH is produced microbially through methanogenesis. Pyrogenic black carbon possesses a considerable electron storage capacity (ESC) and can be an electron donor or acceptor for abiotic and microbial redox transformation. Using wood-derived biochar as a model black carbon, we demonstrated that air-oxidized black carbon served as an electron acceptor to support anaerobic oxidation of organic substrates, thereby suppressing CH production. Black carbon-respiring bacteria were immediately active and outcompeted methanogens. Significant CH did not form until the bioavailable electron-accepting capacity of the biochar was exhausted. An experiment with labeled acetate (CHCOO) yielded 1:1 CH and CO without biochar and predominantly CO with biochar, indicating that biochar enabled anaerobic acetate oxidation at the expense of methanogenesis. Methanogens were enriched following acetate fermentation but only in the absence of biochar. The electron balance shows that approximately half (∼2.4 mmol/g) of biochar's ESC was utilized by the culture, corresponding to the portion of the ESC > +0.173 V (vs SHE). These results provide a mechanistic basis for quantifying the climate impact of black carbon and developing ESC-based applications to reduce CH emissions from biogenic sources.

摘要

甲烷(CH)是第二大重要的温室气体,其温室效应是二氧化碳的 27 倍,目前对人为变暖的贡献率超过 30%。在全球范围内,超过一半的 CH 是通过产甲烷作用微生物产生的。热解黑碳具有相当大的电子存储容量(ESC),可以作为非生物和微生物氧化还原转化的电子供体或受体。我们使用木质衍生生物炭作为模型黑碳,证明空气氧化黑碳作为电子受体,支持有机底物的厌氧氧化,从而抑制 CH 的产生。黑碳呼吸细菌立即活跃起来,并与产甲烷菌竞争。直到生物炭的可用电子接受能力耗尽,才会形成大量 CH。带有标记乙酸盐(CHCOO)的实验表明,没有生物炭时会生成 1:1 的 CH 和 CO,而有生物炭时主要生成 CO,表明生物炭可以使乙酸盐在厌氧条件下氧化,而不是产甲烷。产甲烷菌在乙酸发酵后得到富集,但仅在没有生物炭的情况下。电子平衡表明,培养物利用了生物炭 ESC 的大约一半(约 2.4mmol/g),相当于 ESC > +0.173V(相对于 SHE)的部分。这些结果为量化黑碳的气候影响提供了机制基础,并为基于 ESC 的应用开发提供了减少生物源 CH 排放的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验