Suppr超能文献

多组学融合与软标记增强鼻咽癌患者放疗后远处转移预测。

Multi-omics fusion with soft labeling for enhanced prediction of distant metastasis in nasopharyngeal carcinoma patients after radiotherapy.

机构信息

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.

Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.

出版信息

Comput Biol Med. 2024 Jan;168:107684. doi: 10.1016/j.compbiomed.2023.107684. Epub 2023 Nov 11.

Abstract

Omics fusion has emerged as a crucial preprocessing approach in medical image processing, significantly assisting several studies. One of the challenges encountered in integrating omics data is the unpredictability arising from disparities in data sources and medical imaging equipment. Due to these differences, the distribution of omics futures exhibits spatial heterogeneity, diminishing their capacity to enhance subsequent tasks. To overcome this challenge and facilitate the integration of their joint application to specific medical objectives, this study aims to develop a fusion methodology for nasopharyngeal carcinoma (NPC) distant metastasis prediction to mitigate the disparities inherent in omics data. The multi-kernel late-fusion method can reduce the impact of these differences by mapping the features using the most suiTable single-kernel function and then combining them in a high-dimensional space that can effectively represent the data. The proposed approach in this study employs a distinctive framework incorporating a label-softening technique alongside a multi-kernel-based Radial basis function (RBF) neural network to address these limitations. An efficient representation of the data may be achieved by utilizing the multi-kernel to map the inherent features and then merging them in a space with many dimensions. However, the inflexibility of label fitting poses a constraint on using multi-kernel late-fusion methods in complex NPC datasets, hence affecting the efficacy of general classifiers in dealing with high-dimensional characteristics. The label softening increases the disparity between the two cohorts, providing a more flexible structure for allocating labels. The proposed model is evaluated on multi-omics datasets, and the results demonstrate its strength and effectiveness in predicting distant metastasis of NPC patients.

摘要

组学融合已成为医学图像处理中的一种重要预处理方法,为多项研究提供了重要支持。在整合组学数据时,面临的挑战之一是数据来源和医学成像设备之间的差异带来的不可预测性。由于这些差异,组学数据的分布表现出空间异质性,降低了它们增强后续任务的能力。为了克服这一挑战,并促进其联合应用于特定医学目标,本研究旨在开发一种用于鼻咽癌(NPC)远处转移预测的融合方法,以减轻组学数据中固有的差异。多核后期融合方法可以通过使用最合适的单核函数映射特征,然后在可以有效表示数据的高维空间中合并它们,从而减少这些差异的影响。本研究提出的方法采用了一种独特的框架,结合了标签软化技术和基于多核的径向基函数(RBF)神经网络,以解决这些限制。通过使用多核函数来映射固有特征,然后在具有多个维度的空间中合并它们,可以实现数据的有效表示。然而,标签拟合的不灵活性限制了多核后期融合方法在复杂 NPC 数据集上的应用,从而影响了通用分类器处理高维特征的效果。标签软化增加了两个队列之间的差异,为分配标签提供了更灵活的结构。所提出的模型在多组学数据集上进行了评估,结果表明其在预测 NPC 患者远处转移方面具有强大的性能和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验