Suppr超能文献

使用卷积神经网络进行精子染色质扩散测试的高斯聚类和量化。

Gaussian clustering and quantification of the sperm chromatin dispersion test using convolutional neural networks.

机构信息

Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.

Ningxia Human Sperm Bank, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China.

出版信息

Analyst. 2024 Jan 15;149(2):366-375. doi: 10.1039/d3an01616a.

Abstract

Sperm DNA fragmentation is a sign of sperm nuclear damage. The sperm chromatin dispersion (SCD) test is a reliable and economical method for the evaluation of DNA fragmentation. However, the cut-off value for differentiation of DNA fragmented sperms is fixed at 1/3 with limited statistical justification, making the SCD test a semi-quantitative method that gives user-dependent results. We construct a collection of deep neural networks to automate the evaluation of bright-field images for SCD tests. The model can detect valid sperm nuclei and their locations from the input images captured with a 20× objective and predict the geometric parameters of the halo ring. We construct an annotated dataset consisting of = 3120 images. The ResNet 18 based network reaches an average precision (AP) of 91.3%, a true positive rate of 96.67%, and a true negative rate of 96.72%. The distribution of relative halo radii is fit to the multi-peak Gaussian function ( > 0.99). DNA fragmentation is regarded as those with a relative halo radius 1.6 standard deviations smaller than the mean of a normal cluster. In conclusion, we have established a deep neural network based model for the automation and quantification of the SCD test that is ready for clinical application. The DNA fragmentation index is determined using Gaussian clustering, reflecting the natural distribution of halo geometry and is more tolerable to disturbances and sample conditions, which we believe will greatly improve the clinical significance of the SCD test.

摘要

精子 DNA 碎片化是精子核损伤的一个标志。精子染色质离散(SCD)试验是评估 DNA 碎片化的一种可靠且经济的方法。然而,区分碎片化精子的截断值固定在 1/3,没有充分的统计学依据,这使得 SCD 试验成为一种半定量方法,其结果取决于使用者。我们构建了一组深度神经网络,以实现 SCD 试验的明场图像自动评估。该模型可以从 20×物镜捕获的输入图像中检测有效精子核及其位置,并预测晕环的几何参数。我们构建了一个包含 = 3120 张图像的标注数据集。基于 ResNet 18 的网络达到了平均精度(AP)为 91.3%,真阳性率为 96.67%,真阴性率为 96.72%。相对晕环半径的分布符合多峰高斯函数( > 0.99)。DNA 碎片化被认为是那些相对晕环半径比正常簇平均值小 1.6 个标准差的部分。总之,我们已经建立了一个基于深度神经网络的 SCD 试验自动化和量化模型,可用于临床应用。DNA 碎片化指数是使用高斯聚类来确定的,反映了晕环几何形状的自然分布,对干扰和样本条件更具耐受性,我们相信这将极大地提高 SCD 试验的临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验