Suppr超能文献

在高斯白噪声输入期间,反射弧传递特性的输入大小依赖性。

Input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs.

机构信息

Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan.

Department of Sport and Health Sciences, Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2024 Feb 1;326(2):R121-R133. doi: 10.1152/ajpregu.00199.2023. Epub 2023 Dec 4.

Abstract

Although Gaussian white noise (GWN) inputs offer a theoretical framework for identifying higher-order nonlinearity, an actual application to the data of the neural arc of the carotid sinus baroreflex did not succeed in fully predicting the well-known sigmoidal nonlinearity. In the present study, we assumed that the neural arc can be approximated by a cascade of a linear dynamic (LD) component and a nonlinear static (NS) component. We analyzed the data obtained using GWN inputs with a mean of 120 mmHg and standard deviations (SDs) of 10, 20, and 30 mmHg for 15 min each in anesthetized rats ( = 7). We first estimated the linear transfer function from carotid sinus pressure to sympathetic nerve activity (SNA) and then plotted the measured SNA against the linearly predicted SNA. The predicted and measured data pairs exhibited an inverse sigmoidal distribution when grouped into 10 bins based on the size of the linearly predicted SNA. The sigmoidal nonlinearity estimated via the LD-NS model showed a midpoint pressure (104.1 ± 4.4 mmHg for SD of 30 mmHg) lower than that estimated by a conventional stepwise input (135.8 ± 3.9 mmHg, < 0.001). This suggests that the NS component is more likely to reflect the nonlinearity observed during pulsatile inputs that are physiological to baroreceptors. Furthermore, the LD-NS model yielded higher values compared with the linear model and the previously suggested second-order Uryson model in the testing dataset. We examined the input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs. A linear dynamic-static nonlinear model yielded higher values compared with a linear model and captured the well-known sigmoidal nonlinearity of the neural arc, indicating that the nonlinear dynamics contributed to determining sympathetic nerve activity. Ignoring such nonlinear dynamics might reduce our ability to explain underlying physiology and significantly limit the interpretation of experimental data.

摘要

虽然高斯白噪声(GWN)输入为识别高阶非线性提供了理论框架,但将其实际应用于颈动脉窦压力反射的神经弧数据并没有成功地完全预测出众所周知的 S 型非线性。在本研究中,我们假设神经弧可以通过线性动态(LD)分量和非线性静态(NS)分量的级联来近似。我们分析了在麻醉大鼠中使用 GWN 输入获得的数据,每个输入的均值为 120mmHg,标准差(SD)分别为 10、20 和 30mmHg,持续 15 分钟( = 7)。我们首先估计了颈动脉窦压力到交感神经活动(SNA)的线性传递函数,然后将测量的 SNA 与线性预测的 SNA 进行比较。当根据线性预测 SNA 的大小将预测和测量数据对分成 10 个 bin 时,预测和测量数据对呈现出反 S 型分布。通过 LD-NS 模型估计的非线性中点压力(SD 为 30mmHg 时为 104.1±4.4mmHg)低于传统逐步输入(SD 为 30mmHg 时为 135.8±3.9mmHg,<0.001)估计的非线性中点压力。这表明 NS 分量更有可能反映生理脉冲输入期间观察到的非线性,这种输入对压力感受器是生理的。此外,与线性模型和先前提出的二阶 Uryson 模型相比,LD-NS 模型在测试数据集上产生了更高的 值。我们检查了在高斯白噪声输入期间,血压反射神经弧传递特性的输入大小依赖性。与线性模型相比,线性动态-静态非线性模型产生了更高的 值,并捕获了神经弧的众所周知的 S 型非线性,表明非线性动力学有助于确定交感神经活动。忽略这种非线性动力学可能会降低我们解释潜在生理学的能力,并显著限制对实验数据的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验