Suppr超能文献

无截短遗传密码扩展用四嗪氨基酸进行定量蛋白质连接。

Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations.

机构信息

Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States.

GCE4All Biomedical Technology Development and Dissemination Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States.

出版信息

Bioconjug Chem. 2023 Dec 20;34(12):2243-2254. doi: 10.1021/acs.bioconjchem.3c00380. Epub 2023 Dec 4.

Abstract

Quantitative labeling of biomolecules is necessary to advance areas of antibody-drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein. Here, we demonstrate that reduction of on-protein Tet ncAAs impacts their reactivity, while the leading cause of the unreactive protein is near-cognate suppression (NCS) of UAG codons by endogenous aminoacylated tRNAs. To overcome incomplete conjugation due to NCS, we developed a more catalytically efficient tRNA synthetase and developed a series of new machinery plasmids harboring the aminoacyl tRNA synthetase/tRNA pair (aaRS/tRNA pair). These plasmids enable robust production of homogeneously reactive Tet-protein in truncation-free cell lines, eliminating the contamination caused by NCS and protein truncation. Furthermore, these plasmid systems utilize orthogonal synthetic origins, which render these machinery vectors compatible with any common expression system. Through developing these new machinery plasmids, we established that the aaRS/tRNA pair plasmid copy-number greatly affects the yields and quality of the protein produced. We then produced quantitatively reactive soluble Tet-Fabs, demonstrating the utility of this system for rapid, homogeneous conjugations of biomedically relevant proteins.

摘要

对生物分子进行定量标记对于推进抗体药物偶联、活细胞内分子的超分辨率显微镜成像以及确定蛋白质复合物的化学计量学等领域是必要的。对遗传编码的非天然氨基酸(ncAAs)进行生物正交标记提供了一种优雅的解决方案;然而,其反应性和稳定性较差限制了该方法的实用性。先前,我们表明,编码稳定的 1,2,4,5-四嗪(Tet)包含的 ncAAs 能够实现快速、完全的缀合,但一些表达条件极大地限制了 Tet-蛋白的定量反应性。在这里,我们证明了蛋白质上 Tet ncAAs 的还原会影响它们的反应性,而蛋白质无反应的主要原因是内源性氨酰化 tRNA 对 UAG 密码子的近同功抑制(NCS)。为了克服由于 NCS 导致的不完全缀合,我们开发了一种更具催化效率的 tRNA 合成酶,并开发了一系列带有氨酰 tRNA 合成酶/tRNA 对(aaRS/tRNA 对)的新机器质粒。这些质粒能够在无截短的细胞系中产生均一反应性的 Tet 蛋白,消除了 NCS 和蛋白质截短引起的污染。此外,这些质粒系统利用正交合成原点,使这些机器载体与任何常见的表达系统兼容。通过开发这些新的机器质粒,我们确定了 aaRS/tRNA 对质粒拷贝数极大地影响了所产生蛋白质的产量和质量。然后,我们产生了定量反应性的可溶性 Tet-Fabs,证明了该系统在快速、均匀地缀合生物医学相关蛋白质方面的实用性。

相似文献

1
Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations.
Bioconjug Chem. 2023 Dec 20;34(12):2243-2254. doi: 10.1021/acs.bioconjchem.3c00380. Epub 2023 Dec 4.
2
Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
Acc Chem Res. 2017 Nov 21;50(11):2767-2775. doi: 10.1021/acs.accounts.7b00376. Epub 2017 Oct 6.
3
Protein Expression with Biosynthesized Noncanonical Amino Acids.
Methods Mol Biol. 2023;2676:87-100. doi: 10.1007/978-1-0716-3251-2_6.
4
Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery.
Cell Rep Methods. 2023 Nov 20;3(11):100626. doi: 10.1016/j.crmeth.2023.100626. Epub 2023 Nov 6.
6
A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
ACS Synth Biol. 2018 Sep 21;7(9):2256-2269. doi: 10.1021/acssynbio.8b00260. Epub 2018 Sep 4.
7
Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
Nat Chem. 2018 Aug;10(8):831-837. doi: 10.1038/s41557-018-0052-5. Epub 2018 May 28.
8
Genetic Code Expansion in Mammalian Cells Through Quadruplet Codon Decoding.
Methods Mol Biol. 2023;2676:181-190. doi: 10.1007/978-1-0716-3251-2_13.
9
Enzyme redesign and genetic code expansion.
Protein Eng Des Sel. 2023 Jan 21;36. doi: 10.1093/protein/gzad017.
10
Native Aminoacyl-tRNA Synthetase/tRNA Pair Drives Highly Efficient Noncanonical Amino Acid Incorporation in .
ACS Chem Biol. 2024 Jul 19;19(7):1563-1569. doi: 10.1021/acschembio.4c00221. Epub 2024 Jun 24.

引用本文的文献

1
Tetrazine Amino Acid Encoding for Rapid and Complete Protein Bioconjugation.
Bio Protoc. 2024 Aug 20;14(16):e5048. doi: 10.21769/BioProtoc.5048.
2
Genetic Encoding of Phosphorylated Amino Acids into Proteins.
Chem Rev. 2024 May 22;124(10):6592-6642. doi: 10.1021/acs.chemrev.4c00110. Epub 2024 May 1.

本文引用的文献

1
Site-specific dual encoding and labeling of proteins via genetic code expansion.
Cell Chem Biol. 2023 Apr 20;30(4):343-361. doi: 10.1016/j.chembiol.2023.03.004. Epub 2023 Mar 27.
3
Rational Design for High Bioorthogonal Fluorogenicity of Tetrazine-Encoded Green Fluorescent Proteins.
Nat Sci (Weinh). 2022 Oct;2(4). doi: 10.1002/ntls.20220028. Epub 2022 Aug 8.
4
Generating Efficient Pyrrolysyl-tRNA Synthetases for Structurally Diverse Non-Canonical Amino Acids.
ACS Chem Biol. 2022 Dec 16;17(12):3458-3469. doi: 10.1021/acschembio.2c00639. Epub 2022 Nov 16.
7
Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off.
J Am Chem Soc. 2022 May 11;144(18):8171-8177. doi: 10.1021/jacs.2c01056. Epub 2022 May 2.
9
Genetic Incorporation of Two Mutually Orthogonal Bioorthogonal Amino Acids That Enable Efficient Protein Dual-Labeling in Cells.
ACS Chem Biol. 2021 Nov 19;16(11):2612-2622. doi: 10.1021/acschembio.1c00649. Epub 2021 Sep 30.
10
Bioorthogonal chemistry.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00028-z. Epub 2021 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验