Ferdowsi University of Mashhad, Department of Electrical Engineering, Mashhad, Iran.
Ferdowsi University of Mashhad, Department of Electrical Engineering, Mashhad, Iran.
J Biotechnol. 2024 Jan 10;379:33-45. doi: 10.1016/j.jbiotec.2023.11.007. Epub 2023 Dec 3.
Metallic nanoparticles play a significant role in the catalysis of chemical processes, besides, bimetallic nanoparticles with abundant active sites can reduce metallic nanoparticles toxicity in addition to increasing their catalytic performances. In this work, the platinum, gold, and silver nanoparticles are bio-synthesized using a native bacterium (GFCr-4). Also, the Au-Ag and Au@Ag bimetallic nanoparticles with alloy and core-shell structures, respectively, are biologically synthesized. To improve the synthesis, the effects of various factors like pH, temperature, electron donor, and ionic liquids were investigated. The as-synthesized nanoparticles were characterized with different techniques. The microscope images and dynamic light scattering (DLS) analysis confirm the uniform distribution of as-synthesized nanoparticles with average sizes of 25, 30, 47, 77, and 86 nm obtained for Ag, Au, Pt, Au-Ag alloy, and Au@Ag core-shell, respectively. The catalytic performances of as-synthesized nanoparticles were investigated. The Au-Ag alloy nanoparticles exhibit better catalytic performance than the as-synthesized metallic Au nanoparticles, according to the Gewald reaction. According to the photocatalytic study, the yield can be increased by up to 92% by using PtNPs in the presence of a green LED. Additionally, for the first time, PtNPs were utilized as an effective catalyst in a peroxyoxalate chemiluminescence (POCL) system in the presence of nuclear fast red (NFR) as a novel fluorophore. In addition, the results of the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that the synthesized eco-friendly nanoparticles have a low effect on the lethality of 3T3 normal cells whereas MCF-7 cancer cells were inhibited up to 77.3% after treatment by PtNPs nanoparticles.
金属纳米粒子在化学过程的催化中起着重要作用,此外,具有丰富活性位点的双金属纳米粒子可以降低金属纳米粒子的毒性,同时提高其催化性能。在这项工作中,使用一种天然细菌(GFCr-4)生物合成了铂、金和银纳米粒子。此外,还分别生物合成了具有合金和核壳结构的 Au-Ag 和 Au@Ag 双金属纳米粒子。为了提高合成效率,研究了各种因素的影响,如 pH 值、温度、电子供体和离子液体。使用不同的技术对合成的纳米粒子进行了表征。显微镜图像和动态光散射(DLS)分析证实了合成纳米粒子的均匀分布,得到的平均粒径分别为 25、30、47、77 和 86nm 的 Ag、Au、Pt、Au-Ag 合金和 Au@Ag 核壳。研究了合成纳米粒子的催化性能。根据 Gewald 反应,Au-Ag 合金纳米粒子的催化性能优于合成的金属 Au 纳米粒子。根据光催化研究,在存在绿色 LED 的情况下,使用 PtNPs 可以将产率提高 92%。此外,PtNPs 首次被用作过氧草酸酯化学发光(POCL)系统中的有效催化剂,同时使用核快速红(NFR)作为新型荧光团。此外,MTT(3-[4,5-二甲基噻唑-2-基]-2,5 二苯基四氮唑溴盐)试验的结果表明,合成的环保纳米粒子对 3T3 正常细胞的致死率影响较小,而 MCF-7 癌细胞在经过 PtNPs 纳米粒子处理后抑制率高达 77.3%。