Suppr超能文献

Structural and dynamical properties of concentrated alkali- and alkaline-earth metal chloride aqueous solutions.

作者信息

Zhu Jianzhuo, Zhao Zhuodan, Li Xingyuan, Wei Yong

机构信息

Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.

出版信息

J Chem Phys. 2023 Dec 7;159(21). doi: 10.1063/5.0178123.

Abstract

Concentrated ionic aqueous electrolytes possess a diverse array of applications across various fields, particularly in the field of energy storage. Despite extensive examination, the intricate relationships and numerous physical mechanisms underpinning diverse phenomena remain incompletely understood. Molecular dynamics simulations are employed to probe the attributes of aqueous solutions containing LiCl, NaCl, KCl, MgCl2, and CaCl2, spanning various solute fractions. The primary emphasis of the simulations is on unraveling the intricate interplay between these attributes and the underlying physical mechanisms. The configurations of cation-Cl- and Cl--Cl- pairs within these solutions are disclosed. As the solute fraction increases, consistent trends manifest regardless of solute type: (i) the number of hydrogen bonds formed by the hydration water surrounding ions decreases, primarily attributed to the growing presence of counter ions in proximity to the hydration water; (ii) the hydration number of ions exhibits varying trends influenced by multiple factor; and (iii) the diffusion of ions slows down, attributed to the enhanced confinement and rebound of cations and Cl- ions from the surrounding atoms, concurrently coupled with the changes in ion vibration modes. In our analysis, we have, for the first time, clarified the reasons behind the slowing down of the diffusion of the ions with increasing solute fraction. Our research contributes to a better understanding and manipulation of the attributes of ionic aqueous solutions and may help designing high-performance electrolytes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验