Suppr超能文献

基于BERT的自然语言处理用于药物不良反应报告的分诊,表现出接近人类水平的性能。

BERT based natural language processing for triage of adverse drug reaction reports shows close to human-level performance.

作者信息

Bergman Erik, Dürlich Luise, Arthurson Veronica, Sundström Anders, Larsson Maria, Bhuiyan Shamima, Jakobsson Andreas, Westman Gabriel

机构信息

Swedish Medical Products Agency, Uppsala, Sweden.

Department of Computer Science, RISE Research Institutes of Sweden, Kista, Sweden.

出版信息

PLOS Digit Health. 2023 Dec 6;2(12):e0000409. doi: 10.1371/journal.pdig.0000409. eCollection 2023 Dec.

Abstract

Post-marketing reports of suspected adverse drug reactions are important for establishing the safety profile of a medicinal product. However, a high influx of reports poses a challenge for regulatory authorities as a delay in identification of previously unknown adverse drug reactions can potentially be harmful to patients. In this study, we use natural language processing (NLP) to predict whether a report is of serious nature based solely on the free-text fields and adverse event terms in the report, potentially allowing reports mislabelled at time of reporting to be detected and prioritized for assessment. We consider four different NLP models at various levels of complexity, bootstrap their train-validation data split to eliminate random effects in the performance estimates and conduct prospective testing to avoid the risk of data leakage. Using a Swedish BERT based language model, continued language pre-training and final classification training, we achieve close to human-level performance in this task. Model architectures based on less complex technical foundation such as bag-of-words approaches and LSTM neural networks trained with random initiation of weights appear to perform less well, likely due to the lack of robustness that a base of general language training provides.

摘要

药品上市后疑似药物不良反应报告对于确立药品的安全性概况至关重要。然而,大量的报告给监管机构带来了挑战,因为识别先前未知的药物不良反应出现延迟可能会对患者造成潜在危害。在本研究中,我们使用自然语言处理(NLP)仅根据报告中的自由文本字段和不良事件术语来预测报告是否具有严重性,这有可能检测出报告时标签错误的报告,并将其列为优先评估对象。我们考虑了四种不同复杂度的NLP模型,对其训练-验证数据划分进行自助抽样以消除性能估计中的随机效应,并进行前瞻性测试以避免数据泄露风险。通过使用基于瑞典语BERT的语言模型、持续的语言预训练和最终分类训练,我们在这项任务中实现了接近人类水平的性能。基于词袋方法和随机初始化权重训练的LSTM神经网络等技术基础较简单的模型架构,表现似乎较差,这可能是由于缺乏通用语言训练基础所提供的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a7/10699587/f4a236875de5/pdig.0000409.g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验