Department of Internal Medicine II, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
Department of Neurology, University of Ulm, Ulm, Germany.
Sci Rep. 2023 Dec 6;13(1):21505. doi: 10.1038/s41598-023-48649-6.
The hypothalamus is a small structure of the brain with an essential role in metabolic homeostasis, sleep regulation, and body temperature control. Some neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and dementia syndromes are reported to be related to hypothalamic volume alterations. Despite its crucial role in human body regulation, neuroimaging studies of this structure are rather scarce due to work-intensive operator-dependent manual delineations from MRI and lack of automated segmentation tools. In this study we present a fully automatic approach based on deep convolutional neural networks (CNN) for hypothalamic segmentation and volume quantification. We applied CNN of U-Net architecture with EfficientNetB0 backbone to allow for accurate automatic hypothalamic segmentation in seconds on a GPU. We further applied our approach for the quantification of the normalized hypothalamic volumes to a large neuroimaging dataset of 432 ALS patients and 112 healthy controls (without the ground truth labels). Using the automated volumetric analysis, we could reproduce hypothalamic atrophy findings associated with ALS by detecting significant volume differences between ALS patients and controls at the group level. In conclusion, a fast and unbiased AI-assisted hypothalamic quantification method is introduced in this study (whose acceptance rate based on the outlier removal strategy was estimated to be above 95%) and made publicly available for researchers interested in the conduction of hypothalamus studies at a large scale.
下丘脑是大脑的一个小结构,在代谢稳态、睡眠调节和体温控制中起着至关重要的作用。一些神经退行性疾病,如肌萎缩侧索硬化症(ALS)和痴呆综合征,据报道与下丘脑体积改变有关。尽管下丘脑在人体调节中起着至关重要的作用,但由于 MRI 手动勾画需要大量的操作人员依赖性工作,并且缺乏自动分割工具,因此对该结构的神经影像学研究相当有限。在这项研究中,我们提出了一种基于深度卷积神经网络(CNN)的全自动方法,用于下丘脑分割和体积量化。我们应用了具有 EfficientNetB0 骨干的 U-Net 架构的 CNN,以便在 GPU 上几秒钟内准确地自动进行下丘脑分割。我们进一步将我们的方法应用于对 432 名 ALS 患者和 112 名健康对照者(无真实标签)的大型神经影像学数据集进行归一化下丘脑体积的量化。通过在组水平上检测 ALS 患者和对照组之间的显著体积差异,我们可以使用自动体积分析重现与 ALS 相关的下丘脑萎缩发现。总之,本研究提出了一种快速、无偏的人工智能辅助下丘脑量化方法(其基于异常值去除策略的接受率估计在 95%以上),并为有兴趣进行大规模下丘脑研究的研究人员提供了公开获取途径。