Suppr超能文献

纳米限域增强水合氧化锆对砷酸盐的亲和力:表面配位建模研究。

Nanoconfinement boosts affinity of hydrated zirconium oxides to arsenate: Surface complexation modeling study.

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.

National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.

出版信息

Chemosphere. 2024 Feb;349:140912. doi: 10.1016/j.chemosphere.2023.140912. Epub 2023 Dec 7.

Abstract

Nanoscale hydrated zirconium oxide (HZO) holds great potential in groundwater purification due to its ability to form inner-sphere coordination with arsenate. Despite being frequently used, especially as encapsulations in host materials for practical application in water treatment, the adsorption mechanisms of solutes on HZO are not appropriately explored, in particular for arsenate adsorption. In this study, we investigated the Zr-As coordination configuration and identified the most credible Zr-As configuration using surface complexation modeling (SCM), XPS and FT-IR analysis. The corresponding intrinsic coordination constants (K) values was calculated by SCM, and the nanoconfinement effects were distinguished by comparing bare HZO with the HZO nanoparticles (NPs) encapsulated inside the strongly basic anion exchanger D201. Potentiometric titration suggests that the surface Zirconium hydroxyl groups (≡ZrOH) mainly exist in protonated form (≡ZrOH). Batch adsorption experiments demonstrate that the D201 hosts could adsorb As(V) through ion exchange by the quaternary ammonium groups under the low ionic strength (≤0.01 M NaNO) and at pH > 6. The nanocomposite (HZO@D201) exhibits a higher adsorption capacity in a wide range of pH (3-10) and ionic strength (0.001-0.1 M NaNO) than bare HZO. SCM simulations reveal that the coordination configuration of diprotonated monodentate mononuclear (MM-H2) dominates at pH 3-6, while deprotonated bidentate binuclear (BB-H0) dominates at pH > 7. For each configuration, the intrinsic coordination constants (K) of HZO@D201 (10 and 10, respectively) are significantly higher than those of bare HZO (10 and 10, respectively), indicating a superior chemical bonding affinity caused by nanoconfinement. The obtained K values are used to predict arsenate adsorption isotherms in pH 3 and 9, and the results align with the SCM simulation outcomes. This study may offer a feasible method for investigating the nanoconfinement effect of emerging nanocomposite adsorbents from a thermodynamic perspective, and provide reference coordination equilibrium constants of HZO for research and practical application.

摘要

纳米级水合氧化锆(HZO)由于能够与砷酸根形成内球配位,因此在地下水净化方面具有巨大潜力。尽管 HZO 经常被使用,特别是作为宿主材料的封装物,用于水处理的实际应用,但对溶质在 HZO 上的吸附机制并未进行适当的研究,特别是对于砷酸根的吸附。在这项研究中,我们通过表面络合模型(SCM)、X 射线光电子能谱(XPS)和傅里叶变换红外光谱(FT-IR)分析,研究了 Zr-As 配位构型,并确定了最可信的 Zr-As 构型。通过 SCM 计算了相应的内在配位常数(K)值,并通过比较裸 HZO 和强碱性阴离子交换剂 D201 内部封装的 HZO 纳米颗粒(NPs)来区分纳米限域效应。电位滴定表明,表面锆羟基(≡ZrOH)主要以质子化形式(≡ZrOH)存在。批量吸附实验表明,在低离子强度(≤0.01 M NaNO)和 pH 值>6 下,D201 主体可以通过季铵基团的离子交换吸附 As(V)。纳米复合材料(HZO@D201)在较宽的 pH 值(3-10)和离子强度(0.001-0.1 M NaNO)范围内表现出比裸 HZO 更高的吸附容量。SCM 模拟表明,在 pH 3-6 时,二质子化单齿单核(MM-H2)配位构型占主导地位,而在 pH>7 时,去质子化双齿双核(BB-H0)配位构型占主导地位。对于每种构型,HZO@D201 的内在配位常数(K)(分别为 10 和 10)明显高于裸 HZO 的内在配位常数(K)(分别为 10 和 10),这表明纳米限域引起了更高的化学键合亲和力。使用获得的 K 值预测 pH 3 和 9 下的砷酸盐吸附等温线,结果与 SCM 模拟结果一致。这项研究为从热力学角度研究新兴纳米复合材料吸附剂的纳米限域效应提供了一种可行的方法,并为 HZO 的研究和实际应用提供了参考配位平衡常数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验