Suppr超能文献

基于有效混合搜索技术的约束混合整数规划在智能家居住宅负荷调度中的应用

Effective hybrid search technique based constraint mixed-integer programming for smart home residential load scheduling.

作者信息

Abdelhameed Esam H, Abdelraheem Samah, Mohamed Yehia Sayed, Diab Ahmed A Zaki

机构信息

Faculty of Energy Engineering, Aswan University, Aswan, Egypt.

Modern University for Technology and Information, Cairo, Egypt.

出版信息

Sci Rep. 2023 Dec 10;13(1):21870. doi: 10.1038/s41598-023-48717-x.

Abstract

In this paper, the problem of scheduling smart homes (SHs) residential loads is considered aiming to minimize electricity bills and enhance the user comfort. The problem is addressed as a multi-objective constraint mixed-integer optimization problem (CP-MIP) to model the constrained load operation. As the CP-MIP optimization problem is non-convex, a novel hybrid search technique, that combines the Relaxation and Rounding (RnR) approach and metaheuristic algorithms to enhance the accuracy and relevance of decision variables, is proposed. This search technique is implemented through two stages: the relaxation stage in which a metaheuristic technique is applied to get the optimal rational solution of the problem. Whereas, the second stage is the rounding process which is applied via stochastic rounding approach to provide a good-enough feasible solution. The scheduling process has been done under time-of-use (ToU) dynamic electricity pricing scheme and two powering modes (i.e., powering from the main grid only or powering from a grid-tied photovoltaic (PV) residential power system), in addition, four metaheuristics [i.e., Binary Particle Swarm Optimization (BPSO), Self-Organizing Hierarchical PSO (SOH-PSO), JAYA algorithm, and Comprehensive Learning JAYA algorithm (CL-JAYA)] have been utilized. The results reported in this study verify the effectiveness of the proposed technique. In the 1st powering mode, the electricity bill reduction reaches 19.4% and 20.0% when applying the modified metaheuristics, i.e. SOH-PSO and CL-JAYA, respectively, while reaches 56.1%, and 54.7% respectively in the 2nd powering scenario. In addition, CL-JAYA superiority is also observed with regard to the user comfort.

摘要

本文考虑智能家居(SH)住宅负荷调度问题,旨在使电费最小化并提高用户舒适度。该问题被作为一个多目标约束混合整数优化问题(CP-MIP)来对受限负荷运行进行建模。由于CP-MIP优化问题是非凸的,因此提出了一种新颖的混合搜索技术,该技术结合了松弛与舍入(RnR)方法和元启发式算法,以提高决策变量的准确性和相关性。这种搜索技术通过两个阶段实现:松弛阶段,应用元启发式技术来获得问题的最优合理解;而第二阶段是舍入过程,通过随机舍入方法来提供一个足够好的可行解。调度过程是在分时(ToU)动态电价方案和两种供电模式(即仅从主电网供电或从并网光伏(PV)住宅电力系统供电)下进行的,此外,还使用了四种元启发式算法[即二进制粒子群优化(BPSO)、自组织分层粒子群优化(SOH-PSO)、JAYA算法和综合学习JAYA算法(CL-JAYA)]。本研究报告的结果验证了所提出技术的有效性。在第一种供电模式下,应用改进的元启发式算法,即SOH-PSO和CL-JAYA时,电费降低分别达到19.4%和20.0%,而在第二种供电场景下分别达到56.1%和54.7%。此外,在用户舒适度方面也观察到CL-JAYA的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3641/10711037/14a9b0895f38/41598_2023_48717_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验