Suppr超能文献

基于物联网医疗的智能医疗系统,用于控制新冠疫情的爆发。

IoMT based smart healthcare system to control outbreaks of the COVID-19 pandemic.

作者信息

Almujally Nouf Abdullah, Aljrees Turki, Umer Muhammad, Saidani Oumaima, Hanif Danial, Abuzinadah Nihal, Alnowaiser Khaled, Ashraf Imran

机构信息

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Department College of Computer Science and Engineering, University of Hafr Al-Batin, Hafar Al-Batin, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2023 Oct 19;9:e1493. doi: 10.7717/peerj-cs.1493. eCollection 2023.

Abstract

The COVID-19 pandemic caused millions of infections and deaths globally requiring effective solutions to fight the pandemic. The Internet of Things (IoT) provides data transmission without human intervention and thus mitigates infection chances. A road map is discussed in this study regarding the role of IoT applications to combat COVID-19. In addition, a real-time solution is provided to identify and monitor COVID-19 patients. The proposed framework comprises data collection using IoT-based devices, a health or quarantine center, a data warehouse for artificial intelligence (AI)-based analysis, and healthcare professionals to provide treatment. The efficacy of several machine learning models is also analyzed for the prediction of the severity level of COVID-19 patients using real-time IoT data and a dataset named 'COVID Symptoms Checker'. The proposed ensemble model combines random forest and extra tree classifiers using a soft voting criterion and achieves superior results with a 0.922 accuracy score. The use of IoT applications is found to support medical professionals in investigating the features of the contagious disease and support managing the COVID pandemic more efficiently.

摘要

新冠疫情在全球造成了数百万感染病例和死亡病例,需要有效的解决方案来抗击疫情。物联网(IoT)可在无需人工干预的情况下进行数据传输,从而降低感染几率。本研究探讨了物联网应用在抗击新冠疫情中所起作用的路线图。此外,还提供了一种用于识别和监测新冠患者的实时解决方案。所提出的框架包括使用基于物联网的设备进行数据收集、一个健康或检疫中心、一个用于基于人工智能(AI)分析的数据仓库,以及提供治疗的医护人员。还分析了几种机器学习模型利用实时物联网数据和名为“新冠症状检查器”的数据集预测新冠患者严重程度的效果。所提出的集成模型使用软投票准则将随机森林和极端随机树分类器结合起来,以0.922的准确率得分取得了优异结果。研究发现,物联网应用有助于医疗专业人员研究这种传染病的特征,并更有效地支持新冠疫情的防控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b905/10702750/7e3ec59d9a7f/peerj-cs-09-1493-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验