Programme in Emerging Infectious Diseases, Duke-NUS Medical School 169857, Singapore.
Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand.
Syst Biol. 2024 May 27;73(1):102-124. doi: 10.1093/sysbio/syad067.
Time-scaled phylogenetic trees are an ultimate goal of evolutionary biology and a necessary ingredient in comparative studies. The accumulation of genomic data has resolved the tree of life to a great extent, yet timing evolutionary events remain challenging if not impossible without external information such as fossil ages and morphological characters. Methods for incorporating morphology in tree estimation have lagged behind their molecular counterparts, especially in the case of continuous characters. Despite recent advances, such tools are still direly needed as we approach the limits of what molecules can teach us. Here, we implement a suite of state-of-the-art methods for leveraging continuous morphology in phylogenetics, and by conducting extensive simulation studies we thoroughly validate and explore our methods' properties. While retaining model generality and scalability, we make it possible to estimate absolute and relative divergence times from multiple continuous characters while accounting for uncertainty. We compile and analyze one of the most data-type diverse data sets to date, comprised of contemporaneous and ancient molecular sequences, and discrete and continuous morphological characters from living and extinct Carnivora taxa. We conclude by synthesizing lessons about our method's behavior, and suggest future research venues.
时标系统发育树是进化生物学的终极目标,也是比较研究的必要组成部分。基因组数据的积累在很大程度上解决了生命之树的问题,但如果没有化石年龄和形态特征等外部信息,时间进化事件仍然具有挑战性,甚至是不可能的。将形态学纳入树估计的方法落后于其分子对应方法,特别是在连续特征的情况下。尽管最近取得了进展,但随着我们接近分子所能提供的信息的极限,我们仍然迫切需要这些工具。在这里,我们实现了一套利用系统发生学中连续形态学的最先进方法,并通过进行广泛的模拟研究,我们彻底验证和探索了我们方法的特性。在保持模型通用性和可扩展性的同时,我们可以从多个连续特征中估计绝对和相对分歧时间,同时考虑不确定性。我们编译并分析了迄今为止数据类型最多样化的数据集之一,其中包括当代和古代的分子序列,以及来自现生和已灭绝的 Carnivora 分类单元的离散和连续形态特征。最后,我们综合了关于我们方法行为的经验教训,并提出了未来的研究方向。