Algaba Jesús, Torrejón Miguel J, Blas Felipe J
Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain.
J Chem Phys. 2023 Dec 14;159(22). doi: 10.1063/5.0176120.
In this work, we determine the dissociation line of the nitrogen (N2) hydrate by computer simulation using the TIP4P/Ice model for water and the TraPPE force field for N2. We use the solubility method proposed recently by some of us to evaluate the dissociation temperature of the hydrate at different pressures, from 500 to 1500 bar. Particularly, we calculate the solubility of N2 in the aqueous solution when it is in contact with a N2-rich liquid phase and when in contact with the hydrate phase via planar interfaces as functions of temperature. Since the solubility of N2 decreases with temperature in the first case and increases with temperature in the second case, both curves intersect at a certain temperature that determines the dissociation temperature at a given pressure. We find a good agreement between the predictions obtained in this work and the experimental data taken from the literature in the range of pressures considered in this work. From our knowledge of the solubility curves of N2 in the aqueous solution, we also determine the driving force for nucleation of the hydrate, as a function of temperature, at different pressures. In particular, we use two different thermodynamic routes to evaluate the change in chemical potential for hydrate formation. Although the driving force for nucleation slightly decreases (in absolute value) when the pressure is increased, our results indicate that the effect of pressure can be considered negligible in the range of pressures studied in this work. To the best of our knowledge, this is the first time the driving force for nucleation of a hydrate that exhibits crystallographic structure sII, along its dissociation line, is studied from computer simulation.
在这项工作中,我们使用水的TIP4P/Ice模型和氮气(N₂)的TraPPE力场,通过计算机模拟确定了氮气水合物的分解线。我们采用我们中一些人最近提出的溶解度方法,来评估在500至1500巴不同压力下水合物的分解温度。具体而言,我们计算了氮气在与富氮液相接触以及通过平面界面与水合物相接触时,在水溶液中的溶解度随温度的变化函数。由于在第一种情况下氮气的溶解度随温度降低,而在第二种情况下随温度升高,两条曲线在某一温度相交,该温度决定了给定压力下的分解温度。我们发现这项工作中获得的预测结果与从文献中获取的、在这项工作所考虑的压力范围内的实验数据之间有很好的一致性。根据我们对氮气在水溶液中溶解度曲线的了解,我们还确定了在不同压力下,作为温度函数的水合物成核驱动力。特别是,我们使用两种不同的热力学途径来评估水合物形成过程中的化学势变化。尽管当压力增加时成核驱动力略有降低(绝对值),但我们的结果表明,在这项工作所研究的压力范围内,压力的影响可以忽略不计。据我们所知,这是首次从计算机模拟的角度研究具有sII晶体结构的水合物沿其分解线的成核驱动力。