Suppr超能文献

基于视频的单细胞追踪数据的初步细化

Initial refinement of data from video-based single-cell tracking.

作者信息

Korsnes Mónica Suárez, Korsnes Reinert

机构信息

Department of Clinical and Molecular Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.

Korsnes Biocomputing (KoBio) Trondheim Norway.

出版信息

Cancer Innov. 2023 Aug 9;2(5):416-432. doi: 10.1002/cai2.88. eCollection 2023 Oct.

Abstract

BACKGROUND

Video recording of cells offers a straightforward way to gain valuable information from their response to treatments. An indispensable step in obtaining such information involves tracking individual cells from the recorded data. A subsequent step is reducing such data to represent essential biological information. This can help to compare various single-cell tracking data yielding a novel source of information. The vast array of potential data sources highlights the significance of methodologies prioritizing simplicity, robustness, transparency, affordability, sensor independence, and freedom from reliance on specific software or online services.

METHODS

The provided data presents single-cell tracking of clonal (A549) cells as they grow in two-dimensional (2D) monolayers over 94 hours, spanning several cell cycles. The cells are exposed to three different concentrations of yessotoxin (YTX). The data treatments showcase the parametrization of population growth curves, as well as other statistical descriptions. These include the temporal development of cell speed in family trees with and without cell death, correlations between sister cells, single-cell average displacements, and the study of clustering tendencies.

RESULTS

Various statistics obtained from single-cell tracking reveal patterns suitable for data compression and parametrization. These statistics encompass essential aspects such as cell division, movements, and mutual information between sister cells.

CONCLUSION

This work presents practical examples that highlight the abundant potential information within large sets of single-cell tracking data. Data reduction is crucial in the process of acquiring such information which can be relevant for phenotypic drug discovery and therapeutics, extending beyond standardized procedures. Conducting meaningful big data analysis typically necessitates a substantial amount of data, which can stem from standalone case studies as an initial foundation.

摘要

背景

细胞的视频记录提供了一种直接的方法,可从细胞对处理的反应中获取有价值的信息。从记录的数据中追踪单个细胞是获取此类信息不可或缺的一步。后续步骤是对这些数据进行简化,以呈现基本的生物学信息。这有助于比较各种单细胞追踪数据,从而产生新的信息来源。大量潜在的数据来源凸显了方法的重要性,这些方法应优先考虑简单性、稳健性、透明度、可承受性、传感器独立性以及不依赖特定软件或在线服务。

方法

所提供的数据呈现了克隆(A549)细胞在二维(2D)单层中生长94小时(跨越多个细胞周期)的单细胞追踪情况。细胞暴露于三种不同浓度的岩沙海葵毒素(YTX)。数据处理展示了群体生长曲线的参数化以及其他统计描述。这些包括有细胞死亡和无细胞死亡情况下家族树中细胞速度的时间发展、姐妹细胞之间的相关性、单细胞平均位移以及聚类趋势研究。

结果

从单细胞追踪获得的各种统计数据揭示了适用于数据压缩和参数化的模式。这些统计数据涵盖了细胞分裂、运动以及姐妹细胞之间的互信息等关键方面。

结论

这项工作给出了实际例子,突出了大量单细胞追踪数据中丰富的潜在信息。在获取此类信息的过程中,数据简化至关重要,这些信息可能与表型药物发现和治疗相关,超越了标准化程序。进行有意义的大数据分析通常需要大量数据,这些数据可以源于独立的案例研究作为初始基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9708/10686135/d9cccef6cea6/CAI2-2-416-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验