Suppr超能文献

基于边界框监督的生物医学图像中凸对象分割的多边形逼近学习。

Polygonal Approximation Learning for Convex Object Segmentation in Biomedical Images With Bounding Box Supervision.

出版信息

IEEE J Biomed Health Inform. 2024 Aug;28(8):4522-4533. doi: 10.1109/JBHI.2023.3341699. Epub 2024 Aug 6.

Abstract

As a common and critical medical image analysis task, deep learning based biomedical image segmentation is hindered by the dependence on costly fine-grained annotations. To alleviate this data dependence, in this article, a novel approach, called Polygonal Approximation Learning (PAL), is proposed for convex object instance segmentation with only bounding-box supervision. The key idea behind PAL is that the detection model for convex objects already contains the necessary information for segmenting them since their convex hulls, which can be generated approximately by the intersection of bounding boxes, are equivalent to the masks representing the objects. To extract the essential information from the detection model, a repeated detection approach is employed on biomedical images where various rotation angles are applied and a dice loss with the projection of the rotated detection results is utilized as a supervised signal in training our segmentation model. In biomedical imaging tasks involving convex objects, such as nuclei instance segmentation, PAL outperforms the known models (e.g., BoxInst) that rely solely on box supervision. Furthermore, PAL achieves comparable performance with mask-supervised models including Mask R-CNN and Cascade Mask R-CNN. Interestingly, PAL also demonstrates remarkable performance on non-convex object instance segmentation tasks, for example, surgical instrument and organ instance segmentation.

摘要

作为一项常见且关键的医学图像分析任务,基于深度学习的生物医学图像分割受到对昂贵的细粒度注释的依赖的阻碍。为了减轻这种数据依赖性,本文提出了一种新的方法,称为多边形逼近学习(PAL),用于仅使用边界框监督的凸对象实例分割。PAL 的关键思想是,对于凸对象的检测模型已经包含了分割它们所需的信息,因为它们的凸包可以通过边界框的交集近似生成,这与表示对象的掩码等效。为了从检测模型中提取必要的信息,我们在生物医学图像上采用了重复检测方法,其中应用了各种旋转角度,并利用带有旋转检测结果投影的骰子损失作为训练分割模型的监督信号。在涉及凸对象的生物医学成像任务中,例如核实例分割,PAL 优于仅依赖框监督的已知模型(例如 BoxInst)。此外,PAL 还在包括 Mask R-CNN 和 Cascade Mask R-CNN 在内的掩码监督模型上实现了可比的性能。有趣的是,PAL 还在非凸对象实例分割任务中表现出色,例如手术器械和器官实例分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验