Suppr超能文献

SARS-CoV-2 准种的谜题、挑战和信息库。

Puzzles, challenges, and information reservoir of SARS-CoV-2 quasispecies.

机构信息

Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain.

Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain.

出版信息

J Virol. 2023 Dec 21;97(12):e0151123. doi: 10.1128/jvi.01511-23. Epub 2023 Nov 21.

Abstract

Upon the emergence of SARS-CoV-2 in the human population, it was conjectured that for this coronavirus the dynamic intra-host heterogeneity typical of RNA viruses would be toned down. Nothing of this sort is observed. Here we review the main observations on the complexity and diverse composition of SARS-CoV-2 mutant spectra sampled from infected patients, within the framework of quasispecies dynamics. The analyses suggest that the information provided by myriads of genomic sequences within infected individuals may have a predictive value of the genomic sequences that acquire epidemiological relevance. Possibilities to reconcile the presence of broad mutant spectra in the large RNA coronavirus genome with its encoding a 3' to 5' exonuclease proofreading-repair activity are considered. Indeterminations in the behavior of individual viral genomes provide a benefit for the survival of the ensemble. We propose that this concept falls in the domain of "stochastic thinking," a notion that applies also to cellular processes, as a means for biological systems to face unexpected needs.

摘要

在 SARS-CoV-2 出现在人类群体中后,人们推测这种冠状病毒的 RNA 病毒典型的宿主内动态异质性会减弱。但事实并非如此。在这里,我们在准种动力学框架内,回顾了从感染患者中采样的 SARS-CoV-2 突变体谱的复杂性和多样组成的主要观察结果。分析表明,受感染个体中大量基因组序列提供的信息可能对获得流行病学相关性的基因组序列具有预测价值。我们考虑了在大型 RNA 冠状病毒基因组中存在广泛的突变体谱与其编码 3' 到 5' 外切核酸酶校对-修复活性之间的可能性。单个病毒基因组行为的不确定性为病毒总体的生存提供了优势。我们提出,这一概念属于“随机思维”的范畴,这一概念也适用于细胞过程,是生物系统应对意外需求的一种手段。

相似文献

1
Puzzles, challenges, and information reservoir of SARS-CoV-2 quasispecies.
J Virol. 2023 Dec 21;97(12):e0151123. doi: 10.1128/jvi.01511-23. Epub 2023 Nov 21.
2
SARS-CoV-2 Quasispecies Provides an Advantage Mutation Pool for the Epidemic Variants.
Microbiol Spectr. 2021 Sep 3;9(1):e0026121. doi: 10.1128/Spectrum.00261-21. Epub 2021 Aug 4.
5
Quasispecies of SARS-CoV-2 revealed by single nucleotide polymorphisms (SNPs) analysis.
Virulence. 2021 Dec;12(1):1209-1226. doi: 10.1080/21505594.2021.1911477.
6
Viral quasispecies.
PLoS Genet. 2019 Oct 17;15(10):e1008271. doi: 10.1371/journal.pgen.1008271. eCollection 2019 Oct.
7
From viral democratic genomes to viral wild bunch of quasispecies.
J Med Virol. 2023 Nov;95(11):e29209. doi: 10.1002/jmv.29209.
8
SARS-CoV-2 exhibits intra-host genomic plasticity and low-frequency polymorphic quasispecies.
J Clin Virol. 2020 Oct;131:104585. doi: 10.1016/j.jcv.2020.104585. Epub 2020 Aug 11.
9
Host-dependent editing of SARS-CoV-2 in COVID-19 patients.
Emerg Microbes Infect. 2021 Dec;10(1):1777-1789. doi: 10.1080/22221751.2021.1969868.
10
"Outlaw" mutations in quasispecies of SARS-CoV-2 inhibit replication.
Emerg Microbes Infect. 2024 Dec;13(1):2368211. doi: 10.1080/22221751.2024.2368211. Epub 2024 Jun 25.

引用本文的文献

1
Quasispecies theory and emerging viruses: challenges and applications.
Npj Viruses. 2024 Nov 14;2(1):54. doi: 10.1038/s44298-024-00066-w.
2
SARS-CoV-2 biological clones are genetically heterogeneous and include clade-discordant residues.
J Virol. 2025 May 20;99(5):e0225024. doi: 10.1128/jvi.02250-24. Epub 2025 Apr 24.
3
A general and biomedical perspective of viral quasispecies.
RNA. 2025 Feb 19;31(3):429-443. doi: 10.1261/rna.080280.124.
5
SARS-CoV-2 mutant spectra as variant of concern nurseries: endless variation?
Front Microbiol. 2024 Mar 14;15:1358258. doi: 10.3389/fmicb.2024.1358258. eCollection 2024.
7
Quasispecies are constantly selected through virus-encoded intracellular reproductive population bottlenecking.
J Virol. 2024 Apr 16;98(4):e0002024. doi: 10.1128/jvi.00020-24. Epub 2024 Mar 6.
8
Quasispecies productivity.
Naturwissenschaften. 2024 Feb 19;111(2):11. doi: 10.1007/s00114-024-01897-6.

本文引用的文献

1
Dynamics of the Streptomyces chromosome: chance and necessity.
Trends Genet. 2023 Nov;39(11):873-887. doi: 10.1016/j.tig.2023.07.008. Epub 2023 Sep 6.
2
Evidence for preexisting prion substrain diversity in a biologically cloned prion strain.
PLoS Pathog. 2023 Sep 5;19(9):e1011632. doi: 10.1371/journal.ppat.1011632. eCollection 2023 Sep.
3
The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress.
Annu Rev Microbiol. 2023 Sep 15;77:341-361. doi: 10.1146/annurev-micro-041320-112443. Epub 2023 Jun 12.
4
The continuing discovery on the evidence for RNA editing in SARS-CoV-2.
RNA Biol. 2023 Jan;20(1):219-222. doi: 10.1080/15476286.2023.2214437.
5
The evolution of SARS-CoV-2.
Nat Rev Microbiol. 2023 Jun;21(6):361-379. doi: 10.1038/s41579-023-00878-2. Epub 2023 Apr 5.
6
Quasispecies Nature of RNA Viruses: Lessons from the Past.
Vaccines (Basel). 2023 Jan 30;11(2):308. doi: 10.3390/vaccines11020308.
7
Direct Observation of Competing Prion Protein Fibril Populations with Distinct Structures and Kinetics.
ACS Nano. 2023 Apr 11;17(7):6575-6588. doi: 10.1021/acsnano.2c12009. Epub 2023 Feb 20.
8
Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus.
Sci Adv. 2023 Jan 27;9(4):eadf3731. doi: 10.1126/sciadv.adf3731.
9
Quantifying In-Host Quasispecies Evolution.
Int J Mol Sci. 2023 Jan 9;24(2):1301. doi: 10.3390/ijms24021301.
10
Virus Evolution on Fitness Landscapes.
Curr Top Microbiol Immunol. 2023;439:1-94. doi: 10.1007/978-3-031-15640-3_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验