Suppr超能文献

通过同源介导的末端连接DNA修复,Cas9诱导大DNA有效载荷在原代人T细胞中的靶向整合。

Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair.

作者信息

Webber Beau R, Johnson Matthew J, Skeate Joseph G, Slipek Nicholas J, Lahr Walker S, DeFeo Anthony P, Mills Lauren J, Qiu Xiaohong, Rathmann Blaine, Diers Miechaleen D, Wick Bryce, Henley Tom, Choudhry Modassir, Starr Timothy K, McIvor R Scott, Moriarity Branden S

机构信息

Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

出版信息

Nat Biomed Eng. 2024 Dec;8(12):1553-1570. doi: 10.1038/s41551-023-01157-4. Epub 2023 Dec 13.

Abstract

The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%). We used the method to produce T cells with an engineered T-cell receptor or a chimaeric antigen receptor and show that the cells maintained low levels of exhaustion markers and excellent capacities for proliferation and cytokine production and that they elicited potent antitumour cytotoxicity in vitro and in mice. The method is readily adaptable to current good manufacturing practices and scale-up processes, and hence may be used as an alternative to viral vectors for the production of genetically engineered T cells for cancer immunotherapies.

摘要

在过继性细胞疗法中,依赖病毒载体来生产基因工程免疫细胞仍然是一个转化瓶颈。在此,我们报告了一种利用DNA修复途径同源性介导的末端连接,以及优化的试剂组成和递送方式的方法,用于Cas9诱导的大DNA有效载荷以低毒性靶向整合到原代人T细胞中,且效率接近病毒载体(在多个靶向基因组位点以高达70%的速率靶向敲入1 - 6.7 kb的有效载荷,细胞活力超过80%)。我们使用该方法生产具有工程化T细胞受体或嵌合抗原受体的T细胞,并表明这些细胞维持低水平的耗竭标志物,具有出色的增殖和细胞因子产生能力,并且在体外和小鼠体内引发了强大的抗肿瘤细胞毒性。该方法易于适应现行良好生产规范和扩大规模的过程,因此可作为病毒载体的替代方法,用于生产用于癌症免疫疗法的基因工程T细胞。

相似文献

1
Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair.
Nat Biomed Eng. 2024 Dec;8(12):1553-1570. doi: 10.1038/s41551-023-01157-4. Epub 2023 Dec 13.
3
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
4
Plasmid-based electroporation for efficient genetic engineering in immortalized T lymphocytes.
Metab Eng. 2025 Sep;91:77-90. doi: 10.1016/j.ymben.2025.03.019. Epub 2025 Apr 2.
5
Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma.
Cochrane Database Syst Rev. 2021 Sep 13;9(9):CD013365. doi: 10.1002/14651858.CD013365.pub2.
7
Current Anti-Myeloma Chimeric Antigen Receptor-T Cells: Novel Targets and Methods.
Balkan Med J. 2025 Jul 1;42(4):301-310. doi: 10.4274/balkanmedj.galenos.2025.2025-4-25.
8
Use of endoanal ultrasound for reducing the risk of complications related to anal sphincter injury after vaginal birth.
Cochrane Database Syst Rev. 2015 Oct 29;2015(10):CD010826. doi: 10.1002/14651858.CD010826.pub2.

引用本文的文献

1
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.
Trends Cancer. 2025 Aug 28. doi: 10.1016/j.trecan.2025.08.001.
2
A Singular Base Editing Platform for Polyfunctional Multiplex Engineering of Immune Cells.
bioRxiv. 2025 Jul 16:2025.07.11.664404. doi: 10.1101/2025.07.11.664404.
3
Gene editing and CRISPR-dependent homology-mediated end joining.
Exp Mol Med. 2025 Jul;57(7):1409-1418. doi: 10.1038/s12276-025-01442-z. Epub 2025 Jul 31.
4
Single-stranded HDR templates with truncated Cas12a-binding sequences improve knock-in efficiencies in primary human T cells.
Mol Ther Nucleic Acids. 2025 May 19;36(2):102568. doi: 10.1016/j.omtn.2025.102568. eCollection 2025 Jun 10.
5
Efficient nonviral integration of large transgenes into human T cells using Cas9-CLIPT.
Mol Ther Methods Clin Dev. 2025 Feb 18;33(1):101437. doi: 10.1016/j.omtm.2025.101437. eCollection 2025 Mar 13.
6
Efficient multiplex non-viral engineering and expansion of polyclonal γδ CAR-T cells for immunotherapy.
bioRxiv. 2024 Oct 15:2024.09.03.611042. doi: 10.1101/2024.09.03.611042.
7
Non-viral targeted insertion of large payloads into T cells.
Nat Biomed Eng. 2024 Dec;8(12):1516-1517. doi: 10.1038/s41551-024-01252-0.
8
Non-viral expression of chimeric antigen receptors with multiplex gene editing in primary T cells.
Front Bioeng Biotechnol. 2024 May 31;12:1379900. doi: 10.3389/fbioe.2024.1379900. eCollection 2024.
10
Development and testing of a versatile genome editing application reporter (V-GEAR) system.
Mol Ther Methods Clin Dev. 2024 Apr 24;32(2):101253. doi: 10.1016/j.omtm.2024.101253. eCollection 2024 Jun 13.

本文引用的文献

1
Automated, scaled, transposon-based production of CAR T cells.
J Immunother Cancer. 2022 Sep;10(9). doi: 10.1136/jitc-2022-005189.
2
Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template source.
PLoS Genet. 2022 Feb 18;18(2):e1010060. doi: 10.1371/journal.pgen.1010060. eCollection 2022 Feb.
3
5
Non-viral transfection technologies for next-generation therapeutic T cell engineering.
Biotechnol Adv. 2021 Jul-Aug;49:107760. doi: 10.1016/j.biotechadv.2021.107760. Epub 2021 Apr 28.
6
Cytosolic DNA sensing by cGAS: regulation, function, and human diseases.
Signal Transduct Target Ther. 2021 Apr 30;6(1):170. doi: 10.1038/s41392-021-00554-y.
7
Autologous antigen-presenting cells efficiently expand transposon CAR-T cells with predominant memory phenotype.
Mol Ther Methods Clin Dev. 2021 Mar 23;21:315-324. doi: 10.1016/j.omtm.2021.03.011. eCollection 2021 Jun 11.
8
DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
Trends Genet. 2021 Jul;37(7):639-656. doi: 10.1016/j.tig.2021.02.008. Epub 2021 Apr 22.
9
CAR T-Cell Production Using Nonviral Approaches.
J Immunol Res. 2021 Mar 27;2021:6644685. doi: 10.1155/2021/6644685. eCollection 2021.
10
The cGAS-STING pathway as a therapeutic target in inflammatory diseases.
Nat Rev Immunol. 2021 Sep;21(9):548-569. doi: 10.1038/s41577-021-00524-z. Epub 2021 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验