Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
Adv Sci (Weinh). 2024 Mar;11(9):e2308630. doi: 10.1002/advs.202308630. Epub 2023 Dec 14.
Cancer remains a global health challenge, demanding early detection and accurate diagnosis for improved patient outcomes. An intelligent paradigm is introduced that elevates label-free nonlinear optical imaging with contrastive patch-wise learning, yielding stain-free nonlinear optical computational histology (NOCH). NOCH enables swift, precise diagnostic analysis of fresh tissues, reducing patient anxiety and healthcare costs. Nonlinear modalities are evaluated, including stimulated Raman scattering and multiphoton imaging, for their ability to enhance tumor microenvironment sensitivity, pathological analysis, and cancer examination. Quantitative analysis confirmed that NOCH images accurately reproduce nuclear morphometric features across different cancer stages. Key diagnostic features, such as nuclear morphology, size, and nuclear-cytoplasmic contrast, are well preserved. NOCH models also demonstrate promising generalization when applied to other pathological tissues. The study unites label-free nonlinear optical imaging with histopathology using contrastive learning to establish stain-free computational histology. NOCH provides a rapid, non-invasive, and precise approach to surgical pathology, holding immense potential for revolutionizing cancer diagnosis and surgical interventions.
癌症仍然是一个全球性的健康挑战,需要早期检测和准确诊断,以改善患者的预后。本文引入了一种智能范式,通过对比补丁学习提升无标记非线性光学成像,从而实现无染色的非线性光学计算组织学(NOCH)。NOCH 能够快速、精确地分析新鲜组织,减少患者焦虑和医疗保健成本。评估了包括受激拉曼散射和多光子成像在内的非线性模式,以增强肿瘤微环境敏感性、病理分析和癌症检查的能力。定量分析证实,NOCH 图像能够准确再现不同癌症阶段的核形态计量特征。核形态、大小和核质对比度等关键诊断特征得以很好地保留。NOCH 模型在应用于其他病理组织时也表现出良好的泛化能力。该研究将无标记非线性光学成像与对比学习相结合,应用于组织病理学,建立了无染色的计算组织学。NOCH 为手术病理学提供了一种快速、非侵入性和精确的方法,具有极大的潜力可以彻底改变癌症诊断和手术干预。