Masiero Marianna, Spada Gea Elena, Sanchini Virginia, Munzone Elisabetta, Pietrobon Ricardo, Teixeira Lucas, Valencia Mirtha, Machiavelli Aline, Fragale Elisa, Pezzolato Massimo, Pravettoni Gabriella
Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy.
JMIR Res Protoc. 2023 Dec 14;12:e48852. doi: 10.2196/48852.
Adherence to oral anticancer treatments is critical in the disease trajectory of patients with breast cancer. Given the impact of nonadherence on clinical outcomes and the associated economic burden for the health care system, finding ways to increase treatment adherence is particularly relevant.
The primary end point is to evaluate the effectiveness of a decision support system (DSS) and a machine learning web application in promoting adherence to oral anticancer treatments among patients with metastatic breast cancer. The secondary end point is to collect a set of new physical, psychological, social, behavioral, and quality of life predictive variables that could be used to refine the preliminary version of the machine learning model to predict patients' adherence behavior.
This prospective, randomized controlled study is nested in a large-scale international project named "Enhancing therapy adherence among metastatic breast cancer patients" (Pfizer 65080791), aimed to develop a predictive model of nonadherence and associated DSS and guidelines to foster patients' engagement and therapy adherence. A web-based DSS named TREAT (treatment adherence support) was developed using a patient-driven approach, with 4 sections, that is, Section A: Metastatic Breast Cancer; Section B: Adherence to Cancer Therapies; Section C: Promoting Adherence; and Section D: My Adherence Diary. Moreover, a machine learning-based web application was developed to predict patients' risk factors of adherence to anticancer treatment, specifically pertaining to physical status and comorbid conditions, as well as short and long-term side effects. Overall, 100 patients consecutively admitted at the European Institute of Oncology (IEO) at the Division of Medical Senology will be enrolled; 50 patients with metastatic breast cancer will be exposed to the DSS and machine learning web application for 3 months (experimental group), and 50 patients will not be exposed to the intervention (control group). Each participant will fill a weekly medication diary and a set of standardized self-reports evaluating psychological and quality of life variables (Adherence Attitude Inventory, Beck Depression Inventory-II, Brief Pain Inventory, 13-item Sense of Coherence scale, Brief Italian version of Cancer Behavior Inventory, European Organization for Research and Treatment of Cancer Quality of Life 23-item Breast Cancer-specific Questionnaire, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, 8-item Morisky Medication Adherence Scale, State-Trait Anxiety Inventory forms I and II, Big Five Inventory, and visual analogue scales evaluating risk perception). The 3 assessment time points are T0 (baseline), T1 (1 month), T2 (2 months), and T3 (3 months). This study was approved by the IEO ethics committee (R1786/22-IEO 1907).
The recruitment process started in May 2023 and is expected to conclude on December 2023.
The contribution of machine learning techniques through risk-predictive models integrated into DSS will enable medication adherence by patients with cancer.
ClinicalTrials.gov NCT06161181; https://clinicaltrials.gov/study/NCT06161181.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48852.
坚持口服抗癌治疗对乳腺癌患者的疾病进程至关重要。鉴于不坚持治疗对临床结局的影响以及对医疗保健系统的相关经济负担,寻找提高治疗依从性的方法尤为重要。
主要终点是评估决策支持系统(DSS)和机器学习网络应用程序在促进转移性乳腺癌患者坚持口服抗癌治疗方面的有效性。次要终点是收集一组新的身体、心理、社会、行为和生活质量预测变量,可用于完善机器学习模型的初步版本,以预测患者的依从行为。
这项前瞻性、随机对照研究嵌套在一个名为“提高转移性乳腺癌患者的治疗依从性”(辉瑞65080791)的大型国际项目中,旨在开发一个不依从性预测模型以及相关的决策支持系统和指南,以促进患者的参与和治疗依从性。使用患者驱动的方法开发了一个名为TREAT(治疗依从性支持)的基于网络的决策支持系统,它有4个部分,即A部分:转移性乳腺癌;B部分:癌症治疗的依从性;C部分:促进依从性;D部分:我的依从性日记。此外,还开发了一个基于机器学习的网络应用程序,以预测患者坚持抗癌治疗的风险因素,特别是与身体状况和合并症以及短期和长期副作用有关的因素。总体而言,将招募100名连续入住欧洲肿瘤研究所(IEO)乳腺病科的患者;50名转移性乳腺癌患者将接触决策支持系统和机器学习网络应用程序3个月(实验组),50名患者将不接受干预(对照组)。每位参与者将填写一份每周用药日记和一组标准化的自我报告,评估心理和生活质量变量(依从态度量表、贝克抑郁量表第二版[Beck Depression Inventory-II]、简明疼痛量表[Brief Pain Inventory]、13项连贯感量表[13-item Sense of Coherence scale]、癌症行为量表意大利语简版[Brief Italian version of Cancer Behavior Inventory]、欧洲癌症研究与治疗组织生活质量23项乳腺癌特异性问卷[European Organization for Research and Treatment of Cancer Quality of Life 23-item Breast Cancer-specific Questionnaire]、欧洲癌症研究与治疗组织生活质量问卷[European Organization for Research and Treatment of Cancer Quality of Life Questionnaire]、8项莫利斯基药物依从性量表[8-item Morisky Medication Adherence Scale]、状态-特质焦虑量表第一版和第二版[State-Trait Anxiety Inventory forms I and II]、大五人格量表[Big Five Inventory]以及评估风险感知的视觉模拟量表)。3个评估时间点分别为T0(基线)、T1(1个月)、T2(2个月)和T3(3个月)。本研究已获得IEO伦理委员会批准(R1786/22-IEO 1907)。
招募过程于2023年5月开始,预计于2023年12月结束。
通过整合到决策支持系统中的风险预测模型,机器学习技术将有助于癌症患者坚持用药。
ClinicalTrials.gov NCT06161181;https://clinicaltrials.gov/study/NCT06161181。
国际注册报告识别号(IRRID):DERR1-10.2196/4885