Su Qiaohong, Sheng Rui, Liu Qingcui, Ding Juan, Wang Pengyue, Wang Xingchao, Wang Jiulin, Wang Yonggang, Wang Bao, Huang Yudai
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, PR China.
J Colloid Interface Sci. 2024 Mar 15;658:43-51. doi: 10.1016/j.jcis.2023.12.045. Epub 2023 Dec 9.
The rational construction of amorphous-crystalline heterointerface can effectively improve the activity and stability of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, RuO/CoO (RCO) amorphous-crystalline heterointerface is prepared via oxidation method. The optimal RCO-10 exhibits low overpotentials of 57 and 231 mV for HER and OER at 10 mA cm, respectively. Experimental characterization and density functional theory (DFT) results show that the optimized electronic structure and surface reconstruction endow RCO-10 with excellent catalytic activity. DFT results show that electrons transfer from RuO to CoO through the amorphous-crystalline heterointerface, achieving electron redistribution and moving the d-band center upward, which optimizes the adsorption free energy of the hydrogen reaction intermediate. Moreover, the reconstructed Ru/Co(OH) during the HER process has low hydrogen adsorption free energy to enhance HER activity. The reconstructed RuO/CoOOH during the OER process has a low energy barrier for the elementary reaction (O*→*OOH) to enhance OER activity. Furthermore, RCO-10 requires only 1.50 V to drive 10 mA cm and maintains stability over 200 h for overall water splitting. Meanwhile, RCO-10 displays stability for 48 h in alkaline solutions containing 0.5 M NaCl. The amorphous-crystalline heterointerface may bring new breakthroughs in the design of efficient and stable catalysts.
非晶态-晶态异质界面的合理构建能够有效提高析氢反应(HER)和析氧反应(OER)的活性及稳定性。在此,通过氧化法制备了RuO/CoO(RCO)非晶态-晶态异质界面。最优的RCO-10在10 mA cm时,HER和OER的过电位分别低至57和231 mV。实验表征和密度泛函理论(DFT)结果表明,优化的电子结构和表面重构赋予RCO-10优异的催化活性。DFT结果表明,电子通过非晶态-晶态异质界面从RuO转移至CoO,实现了电子重新分布并使d带中心上移,从而优化了氢反应中间体的吸附自由能。此外,HER过程中重构的Ru/Co(OH)具有较低的氢吸附自由能,以增强HER活性。OER过程中重构的RuO/CoOOH对于基元反应(O*→*OOH)具有较低的能垒,以增强OER活性。此外,RCO-10驱动10 mA cm仅需1.50 V,且在全水解过程中可保持200 h以上的稳定性。同时,RCO-10在含有0.5 M NaCl的碱性溶液中可保持48 h的稳定性。非晶态-晶态异质界面可能为高效稳定催化剂的设计带来新的突破。