Suppr超能文献

统一并抑制聚合物电介质的传导损耗以实现卓越的高温电容储能

Unifying and Suppressing Conduction Losses of Polymer Dielectrics for Superior High-Temperature Capacitive Energy Storage.

作者信息

Yang Minhao, Wang Zepeng, Zhao Yanlong, Liu Zeren, Pang Hui, Dang Zhi-Min

机构信息

Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, China.

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China.

出版信息

Adv Mater. 2024 Dec;36(52):e2309640. doi: 10.1002/adma.202309640. Epub 2023 Dec 29.

Abstract

Superior high-temperature capacitive performance of polymer dielectrics is critical for the modern film capacitor demanded in the harsh-environment electronic and electrical systems. Unfortunately, the capacitive performance degrades rapidly at elevated temperatures owing to the exponential growth of conduction loss. The conduction loss is mainly composed of electrode and bulk-limited conduction. Herein, the contribution of surface and bulk factors is unified to conduction loss, and the loss is thoroughly suppressed. The experimental results demonstrate that the polar oxygen-containing groups on the surface of polymer dielectrics can act as the charge trap sites to immobilize the injected charges from electrode, which can in turn establish a built-in field to weaken the external electric field and augment the injection barrier height. Wide bandgap aluminum oxide (AlO) nanoparticle fillers can serve as deep traps to constrain the transport of injected or thermally activated charges in the bulk phase. From this, at 200 °C, the discharged energy density with a discharge-charge efficiency of 90% increases by 1058.06% from 0.31 J cm for pristine polyetherimide to 3.59 J cm for irradiated composite film. The principle of simultaneously inhibiting the electrode and bulk-limited conduction losses could be easily extended to other polymer dielectrics for high-temperature capacitive performance.

摘要

对于恶劣环境下的电子和电气系统所需的现代薄膜电容器而言,聚合物电介质优异的高温电容性能至关重要。不幸的是,由于传导损耗呈指数增长,电容性能在高温下会迅速下降。传导损耗主要由电极和本体限制传导组成。在此,将表面和本体因素对传导损耗的贡献统一起来,并彻底抑制了损耗。实验结果表明,聚合物电介质表面的极性含氧基团可作为电荷陷阱位点,固定从电极注入的电荷,这反过来又能建立一个内建电场,削弱外部电场并增加注入势垒高度。宽带隙氧化铝(AlO)纳米颗粒填料可作为深陷阱,限制注入或热激活电荷在本体相中的传输。由此,在200°C时,放电电荷效率为90%的放电能量密度从原始聚醚酰亚胺的0.31 J/cm³提高到辐照复合薄膜的3.59 J/cm³,增长了1058.06%。同时抑制电极和本体限制传导损耗的原理可以很容易地扩展到其他具有高温电容性能的聚合物电介质上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验