Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA.
Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA.
Sci Total Environ. 2024 Feb 20;912:169253. doi: 10.1016/j.scitotenv.2023.169253. Epub 2023 Dec 14.
Coastal harmful algal blooms (HABs) have become one of the challenging environmental problems in the world's thriving coastal cities due to the interference of multiple stressors from human activities and climate change. Past HAB predictions primarily relied on single-source data, overlooked upstream land use, and typically used a single prediction algorithm. To address these limitations, this study aims to develop predictive models to establish the relationship between the HAB indicator - chlorophyll-a (Chl-a) and various environmental stressors, under appropriate lagging predictive scenarios. To achieve this, we first applied the partial autocorrelation function (PACF) to Chl-a to precisely identify two prediction scenarios. We then combined multi-source data and several machine learning algorithms to predict harmful algae, using SHapley Additive exPlanations (SHAP) to extract key features influencing output from the prediction models. Our findings reveal an apparent 1-month autoregressive characteristic in Chl-a, leading us to create two scenarios: 1-month lead prediction and current-month prediction. The Extra Tree Regressor (ETR), with an R of 0.92, excelled in 1-month lead predictions, while the Random Forest Regressor (RFR) was most effective for current-month predictions with an R of 0.69. Additionally, we identified current month Chl-a, developed land use, total phosphorus, and nitrogen oxides (NOx) as critical features for accurate predictions. Our predictive framework, which can be applied to coastal regions worldwide, provides decision-makers with crucial tools for effectively predicting and mitigating HAB threats in major coastal cities.
沿海有害藻华 (HABs) 已成为世界上繁荣沿海城市面临的具有挑战性的环境问题之一,这是由于人类活动和气候变化带来的多种压力的干扰。过去的 HAB 预测主要依赖于单一来源的数据,忽略了上游土地利用情况,并且通常使用单一的预测算法。为了解决这些限制,本研究旨在开发预测模型,以建立 HAB 指标 - 叶绿素-a (Chl-a) 与各种环境胁迫因子之间的关系,并在适当的滞后预测情景下进行预测。为了实现这一目标,我们首先应用偏自相关函数 (PACF) 对 Chl-a 进行分析,以准确识别两种预测情景。然后,我们结合多源数据和几种机器学习算法来预测有害藻类,并使用 SHapley Additive exPlanations (SHAP) 从预测模型中提取影响输出的关键特征。我们的研究结果表明,Chl-a 存在明显的 1 个月自回归特征,因此我们创建了两种情景:1 个月提前预测和当前月预测。Extra Tree Regressor (ETR) 在 1 个月提前预测中表现出色,R 为 0.92,而 Random Forest Regressor (RFR) 在当前月预测中效果最佳,R 为 0.69。此外,我们还确定了当前月 Chl-a、土地利用、总磷和氮氧化物 (NOx) 是准确预测的关键特征。我们的预测框架可以应用于全球沿海地区,为决策者提供了在主要沿海城市有效预测和减轻 HAB 威胁的重要工具。