Suppr超能文献

全固态电池中阴极的添加剂衍生表面改性:二氟磷酸锂和二氟(草酸根)硼酸锂衍生涂层的影响

Additive-Derived Surface Modification of Cathodes in All-Solid-State Batteries: The Effect of Lithium Difluorophosphate- and Lithium Difluoro(oxalato)borate-Derived Coating Layers.

作者信息

Joo Myeong Jun, Kim Minseong, Chae Sujong, Ko Minseong, Park Yong Joon

机构信息

Department of Advanced Materials Engineering, Graduate School Kyonggi University, 154-42, Gwanggyosan-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do 16227, Republic of Korea.

Division of Convergence Materials Engineering, Pukyong National University, Busan 48547, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2023 Dec 27;15(51):59389-59402. doi: 10.1021/acsami.3c12858. Epub 2023 Dec 16.

Abstract

Sulfide-based electrolytes, with their high conductivity and formability, enable the construction of high-performance, all-solid-state batteries (ASSBs). However, the instability of the cathode-sulfide electrolyte interface limits the commercialization of these ASSBs. Surface modification of cathodes using the coating technique has been explored as an efficient approach to stabilize these interfaces. In this study, the additives lithium difluorophosphate (LiDFP) and lithium difluoro(oxalato)borate (LiDFOB) are used to fabricate stable cathode coatings via heat treatment. The low melting points of LiDFP and LiDFOB enable the formation of thin and uniform coating layers by a low-temperature heat treatment. All-solid-state cells containing LiDFP- and LiDFOB-coated cathodes show electrochemical performances significantly better than those comprising uncoated cathodes. Among all of the as-prepared coated cathodes, LiDFP-coated cathodes fabricated using a slightly lower temperature than the phase-transition temperature of LiDFP (320 °C) show the best discharge capacity, rate capability, and cyclic performance. Furthermore, cells comprising LiDFP-coated cathodes showed significantly low impedance. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy confirm the effectiveness of the LiDFP coating. LiDFP-coated cathodes minimized side-reactions during cycling, resulting in a significantly low cathode-surface degradation. Hence, this study highlights the efficiency of the proposed coating method and its potential to facilitate the commercialization of ASSBs. Overall, this study reports an effective technique to stabilize the cathode-electrolyte interface in sulfide-based ASSBs, which could expedite the practical implementation of these advanced energy-storage devices.

摘要

基于硫化物的电解质具有高导电性和可成型性,能够构建高性能全固态电池(ASSB)。然而,阴极 - 硫化物电解质界面的不稳定性限制了这些全固态电池的商业化。利用涂层技术对阴极进行表面改性已被探索为稳定这些界面的有效方法。在本研究中,添加剂二氟磷酸锂(LiDFP)和二氟(草酸根)硼酸锂(LiDFOB)用于通过热处理制备稳定的阴极涂层。LiDFP和LiDFOB的低熔点使得能够通过低温热处理形成薄且均匀的涂层。含有LiDFP和LiDFOB涂层阴极的全固态电池表现出比未涂层阴极的电池显著更好的电化学性能。在所有制备的涂层阴极中,使用略低于LiDFP相变温度(320°C)的温度制备的LiDFP涂层阴极表现出最佳的放电容量、倍率性能和循环性能。此外,包含LiDFP涂层阴极的电池显示出显著低的阻抗。X射线光电子能谱和高分辨率透射电子显微镜证实了LiDFP涂层的有效性。LiDFP涂层阴极使循环过程中的副反应最小化,导致阴极表面降解显著降低。因此,本研究突出了所提出的涂层方法的有效性及其促进全固态电池商业化的潜力。总体而言,本研究报道了一种稳定基于硫化物的全固态电池中阴极 - 电解质界面的有效技术,这可以加速这些先进储能装置的实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验