Stasyuk Olga A, Voityuk Alexander A, Stasyuk Anton J, Solà Miquel
Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain.
Acc Chem Res. 2024 Jan 2;57(1):37-46. doi: 10.1021/acs.accounts.3c00488. Epub 2023 Dec 16.
ConspectusPhotoinduced electron transfer (PET) in carbon materials is a process of great importance in light energy conversion. Carbon materials, such as fullerenes, graphene flakes, carbon nanotubes, and cycloparaphenylenes (CPPs), have unusual electronic properties that make them interesting objects for PET research. These materials can be used as electron-hole transport layers, electrode materials, or passivation additives in photovoltaic devices. Moreover, their appropriate combination opens up new possibilities for constructing photoactive supramolecular systems with efficient charge transfer between the donor and acceptor parts. CPPs build a class of molecules consisting of para-linked phenylene rings. CPPs and their numerous derivatives are appealing building blocks in supramolecular chemistry, acting as suitable concave receptors with strong host-guest interactions for the convex surfaces of fullerenes. Efficient PET in donor-acceptor systems can be observed when charge separation occurs faster than charge recombination. This Account focuses on selected inclusion complexes of carbon nanohoops studied by our group. We modeled charge separation and charge recombination in both previously synthesized and computationally designed complexes to identify how various modifications of host and guest molecules affect the PET efficiency in these systems. A consistent computational protocol we used includes a time-dependent density-functional theory (TD-DFT) formalism with the Tamm-Dancoff approximation (TDA) and CAM-B3LYP functional to carry out excited state calculations and the nonadiabatic electron transfer theory to estimate electron-transfer rates. We show how the photophysical properties of carbon nanohoops can be modified by incorporating additional π-conjugated fragments and antiaromatic units, multiple fluorine substitutions, and extending the overall π-electron system. Incorporating π-conjugated groups or linkers is accompanied by the appearance of new charge transfer states. Perfluorination of the nanohoops radically changes their role in charge separation from an electron donor to an electron acceptor. Vacancy defects in π-extended nanohoops are shown to hinder PET between host and guest molecules, while large fully conjugated π-systems improve the electron-donor properties of nanohoops. We also highlight the role of antiaromatic structural units in tuning the electronic properties of nanohoops. Depending on the aromaticity degree of monomeric units in nanohoops, the direction of electron transfer in their complexes with C fullerene can be altered. Nanohoops with aromatic units usually act as electron donors, while those with antiaromatic monomers serve as electron acceptors. Finally, we discuss why charged fullerenes are better electron acceptors than neutral C and how the charge location allows for the design of more efficient donor-acceptor systems with an unusual hypsochromic shift of the charge transfer band in polar solvents.
综述
碳材料中的光致电子转移(PET)在光能转换中是一个非常重要的过程。碳材料,如富勒烯、石墨烯薄片、碳纳米管和环对苯撑(CPPs),具有不同寻常的电子性质,这使它们成为PET研究的有趣对象。这些材料可用作光伏器件中的电子 - 空穴传输层、电极材料或钝化添加剂。此外,它们的适当组合为构建在供体和受体部分之间具有高效电荷转移的光活性超分子系统开辟了新的可能性。CPPs构成了一类由对连接的亚苯基环组成的分子。CPPs及其众多衍生物是超分子化学中吸引人的构建块,作为合适的凹形受体,与富勒烯的凸面具有强烈的主 - 客体相互作用。当电荷分离比电荷复合发生得更快时,可以观察到供体 - 受体系统中的高效PET。本综述重点关注我们小组研究的选定碳纳米环包合物。我们对先前合成的和通过计算设计的配合物中的电荷分离和电荷复合进行建模,以确定主体和客体分子的各种修饰如何影响这些系统中的PET效率。我们使用的一致计算方案包括具有Tamm - Dancoff近似(TDA)和CAM - B3LYP泛函的含时密度泛函理论(TD - DFT)形式,以进行激发态计算,并使用非绝热电子转移理论来估计电子转移速率。我们展示了如何通过并入额外的π共轭片段和反芳香单元、多个氟取代以及扩展整体π电子系统来改变碳纳米环的光物理性质。并入π共轭基团或连接体会伴随着新的电荷转移态的出现。纳米环的全氟化从根本上改变了它们在电荷分离中从电子供体到电子受体的作用。π扩展纳米环中的空位缺陷被证明会阻碍主体和客体分子之间的PET,而大的完全共轭π系统会改善纳米环的电子供体性质。我们还强调了反芳香结构单元在调节纳米环电子性质中的作用。根据纳米环中单体单元的芳香性程度,它们与C富勒烯配合物中的电子转移方向可以改变。具有芳香单元的纳米环通常作为电子供体,而具有反芳香单体的纳米环则作为电子受体。最后,我们讨论了为什么带电富勒烯比中性C是更好的电子受体,以及电荷位置如何允许设计更高效的供体 - 受体系统,该系统在极性溶剂中具有不寻常的电荷转移带紫移。