Suppr超能文献

重新审视耗散粒子动力学模拟中输运系数的格林-库博表达式。

Green-Kubo expressions for transport coefficients from dissipative particle dynamics simulations revisited.

作者信息

Malaspina D C, Lísal M, Larentzos J P, Brennan J K, Mackie A D, Avalos J Bonet

机构信息

Departament d'Enginyeria Química, ETSEQ, Universitat Rovira i Virgili, Tarragona 43007, Spain.

Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague 16500, Czech Republic.

出版信息

Phys Chem Chem Phys. 2024 Jan 3;26(2):1328-1339. doi: 10.1039/d3cp03791f.

Abstract

This article addresses the debate about the correct application of Green-Kubo expressions for transport coefficients from dissipative particle dynamics simulations. We demonstrate that the Green-Kubo expressions are valid provided that (i) the dynamic model conserves the physical property, whose transport is studied, and (ii) the fluctuations satisfy detailed balance. As a result, the traditional expressions used in molecular dynamics can also be applied to dissipative particle dynamics simulations. However, taking the calculation of the shear viscosity as a paradigmatic example, a random contribution, whose strength scales as 1/δ, with δ the time-step, can cause difficulties if the stress tensor is not separated into the different contributions. We compare our expression to that of Ernst and Brito (M. H. Ernst and R. Brito, , 2006, , 183-189), which arises from a diametrically different perspective. We demonstrate that the two expressions are completely equivalent and find exactly the same result both analytically and numerically. We show that the differences are not due to the lack of time-reversibility but instead from a pre-averaging of the random contributions. Despite the overall validity of Green-Kubo expressions, we find that the Einstein-Helfand relations (D. C. Malaspina , 2023, , 12025-12040) do not suffer from the need to decompose the stress tensor and can readily be used with a high degree of accuracy. Consequently, Einstein-Helfand relations should be seen as the preferred method to calculate transport coefficients from dissipative particle dynamics simulations.

摘要

本文探讨了关于在耗散粒子动力学模拟中正确应用格林-久保表达式来计算输运系数的争论。我们证明,只要满足以下条件,格林-久保表达式就是有效的:(i)动力学模型守恒所研究输运的物理性质;(ii)涨落满足细致平衡。因此,分子动力学中使用的传统表达式也可应用于耗散粒子动力学模拟。然而,以剪切黏度的计算为例,如果应力张量未被分离成不同的贡献,那么一个强度与时间步长δ成1/δ比例的随机贡献可能会带来困难。我们将我们的表达式与恩斯特和布里托(M. H. 恩斯特和R. 布里托,《》,2006年,《》,第183 - 189页)的表达式进行了比较,后者源自完全不同的视角。我们证明这两个表达式是完全等效的,并且在解析和数值计算上都得到了完全相同的结果。我们表明差异并非源于缺乏时间可逆性,而是来自随机贡献的预平均。尽管格林-久保表达式总体上是有效的,但我们发现爱因斯坦-赫尔方德关系(D. C. 马拉斯皮纳,《》,2023年,《》,第12025 - 12040页)无需分解应力张量,并且可以高精度地使用。因此,爱因斯坦-赫尔方德关系应被视为从耗散粒子动力学模拟中计算输运系数的首选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验