Kierski Thomas M, Walmer Rachel W, Tsuruta James K, Yin Jianhua, Chérin Emmanuel, Foster F Stuart, Demore Christine E M, Newsome Isabel G, Pinton Gianmarco F, Dayton Paul A
Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA.
Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
IEEE Open J Ultrason Ferroelectr Freq Control. 2022;2:237-249. doi: 10.1109/ojuffc.2022.3212342. Epub 2022 Oct 5.
Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of 23 μm, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.
超声分子成像(USMI)是一种通过对已修饰以靶向血管内皮上感兴趣受体的微泡造影剂(MCA)进行成像来无创估计分子标记物分布的技术。USMI在临床前和临床癌症研究中尤为重要,并已用于预测肿瘤恶性程度和治疗反应。在过去十年中,出现了将超声造影分辨率提高一个数量级并使研究人员能够无创成像单个毛细血管的方法。然而,这些方法并不能直接转化为分子成像。在这项工作中,我们展示了使用具有双频换能器、靶向造影剂和定位显微镜处理的超谐波超声成像(SpHI)对生物标志物表达进行超分辨率可视化。我们使用同步光学和超声显微镜以及微血管模型对所提出的方法进行验证和优化。使用相同的技术,我们在大鼠纤维肉瘤模型中进行了概念验证实验,并创建了与微血管图像共配准的生物标志物表达图谱。从这些图像中,我们测量出分辨率为23μm,与之前的衍射极限分子成像研究相比,分辨率提高了近五倍。