Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK.
Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
Acta Neuropathol Commun. 2023 Dec 21;11(1):208. doi: 10.1186/s40478-023-01686-8.
Amyotrophic lateral sclerosis (ALS) displays considerable clinical and genetic heterogeneity. Machine learning approaches have previously been utilised for patient stratification in ALS as they can disentangle complex disease landscapes. However, lack of independent validation in different populations and tissue samples have greatly limited their use in clinical and research settings. We overcame these issues by performing hierarchical clustering on the 5000 most variably expressed autosomal genes from motor cortex expression data of people with sporadic ALS from the KCL BrainBank (N = 112). Three molecular phenotypes linked to ALS pathogenesis were identified: synaptic and neuropeptide signalling, oxidative stress and apoptosis, and neuroinflammation. Cluster validation was achieved by applying linear discriminant analysis models to cases from TargetALS US motor cortex (N = 93), as well as Italian (N = 15) and Dutch (N = 397) blood expression datasets, for which there was a high assignment probability (80-90%) for each molecular subtype. The ALS and motor cortex specificity of the expression signatures were tested by mapping KCL BrainBank controls (N = 59), and occipital cortex (N = 45) and cerebellum (N = 123) samples from TargetALS to each cluster, before constructing case-control and motor cortex-region logistic regression classifiers. We found that the signatures were not only able to distinguish people with ALS from controls (AUC 0.88 ± 0.10), but also reflect the motor cortex-based disease process, as there was perfect discrimination between motor cortex and the other brain regions. Cell types known to be involved in the biological processes of each molecular phenotype were found in higher proportions, reinforcing their biological interpretation. Phenotype analysis revealed distinct cluster-related outcomes in both motor cortex datasets, relating to disease onset and progression-related measures. Our results support the hypothesis that different mechanisms underpin ALS pathogenesis in subgroups of patients and demonstrate potential for the development of personalised treatment approaches. Our method is available for the scientific and clinical community at https://alsgeclustering.er.kcl.ac.uk .
肌萎缩侧索硬化症(ALS)表现出相当大的临床和遗传异质性。机器学习方法以前曾被用于 ALS 患者的分层,因为它们可以理清复杂的疾病图谱。然而,在不同人群和组织样本中缺乏独立验证极大地限制了它们在临床和研究环境中的应用。我们通过对 KCL 脑库中来自散发性 ALS 患者运动皮层表达数据的 5000 个最可变常染色体基因进行层次聚类来克服这些问题(N=112)。确定了与 ALS 发病机制相关的三个分子表型:突触和神经肽信号、氧化应激和细胞凋亡以及神经炎症。通过将线性判别分析模型应用于 TargetALS 美国运动皮层的病例(N=93)以及意大利(N=15)和荷兰(N=397)血液表达数据集来实现聚类验证,对于每个分子亚型,其分配概率都很高(80-90%)。通过将 KCL 脑库对照(N=59)、TargetALS 的枕叶皮层(N=45)和小脑(N=123)样本映射到每个聚类,然后构建病例对照和运动皮层区域逻辑回归分类器,来测试表达谱的 ALS 和运动皮层特异性。我们发现,这些特征不仅能够将 ALS 患者与对照者区分开来(AUC 0.88±0.10),而且还反映了基于运动皮层的疾病过程,因为在运动皮层和其他脑区之间存在完美的区分。已知参与每个分子表型生物学过程的细胞类型的比例更高,这加强了它们的生物学解释。表型分析揭示了两个运动皮层数据集中与疾病发作和进展相关的测量结果明显相关的聚类相关结果。我们的结果支持了不同机制在亚组患者中为 ALS 发病机制提供基础的假设,并证明了为个性化治疗方法的发展提供了潜力。我们的方法可供科学界和临床界使用,网址为 https://alsgeclustering.er.kcl.ac.uk。