Suppr超能文献

微流控陷阱中布氏锥虫的空间限制为研究自由游动的寄生虫提供了一种新工具。

Spatial confinement of Trypanosoma brucei in microfluidic traps provides a new tool to study free swimming parasites.

机构信息

Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, INSERM U1201, Paris, France.

Institut Pasteur, Université de Paris, Biomaterials and Microfluidics Core Facility, Paris, France.

出版信息

PLoS One. 2023 Dec 22;18(12):e0296257. doi: 10.1371/journal.pone.0296257. eCollection 2023.

Abstract

Trypanosoma brucei is the causative agent of African trypanosomiasis and is transmitted by the tsetse fly (Glossina spp.). All stages of this extracellular parasite possess a single flagellum that is attached to the cell body and confers a high degree of motility. While several stages are amenable to culture in vitro, longitudinal high-resolution imaging of free-swimming parasites has been challenging, mostly due to the rapid flagellar beating that constantly twists the cell body. Here, using microfabrication, we generated various microfluidic devices with traps of different geometrical properties. Investigation of trap topology allowed us to define the one most suitable for single T. brucei confinement within the field of view of an inverted microscope while allowing the parasite to remain motile. Chips populated with V-shaped traps allowed us to investigate various phenomena in cultured procyclic stage wild-type parasites, and to compare them with parasites whose motility was altered upon knockdown of a paraflagellar rod component. Among the properties that we investigated were trap invasion, parasite motility, and the visualization of organelles labelled with fluorescent dyes. We envisage that this tool we have named "Tryp-Chip" will be a useful tool for the scientific community, as it could allow high-throughput, high-temporal and high-spatial resolution imaging of free-swimming T. brucei parasites.

摘要

布氏锥虫是引起非洲锥虫病的病原体,由采采蝇( Glossina spp. )传播。这种细胞外寄生虫的所有阶段都有一根附着在虫体上的单一鞭毛,这赋予了它高度的运动能力。虽然有几个阶段可以在体外培养,但自由游动寄生虫的纵向高分辨率成像一直具有挑战性,主要是因为鞭毛的快速摆动会不断扭曲虫体。在这里,我们使用微制造技术生成了具有不同几何特性的各种微流控设备和陷阱。对陷阱拓扑结构的研究使我们能够定义最适合在倒置显微镜的视野内对单个布氏锥虫进行单囚禁的一种陷阱,同时保持寄生虫的运动能力。填充有 V 形陷阱的芯片使我们能够研究培养的前鞭毛体野生型寄生虫中的各种现象,并将其与鞭毛蛋白敲低后运动能力改变的寄生虫进行比较。我们研究的特性包括陷阱入侵、寄生虫的运动能力以及用荧光染料标记的细胞器的可视化。我们设想,我们称之为“Tryp-Chip”的这个工具将成为科学界的一个有用工具,因为它可以实现对自由游动的布氏锥虫的高通量、高时间和高空间分辨率成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1676/10745224/2acd7dd5be07/pone.0296257.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验