Komlósi Ferenc, Tóth Patrik, Bohus Gyula, Vámosi Péter, Tokodi Márton, Szegedi Nándor, Salló Zoltán, Piros Katalin, Perge Péter, Osztheimer István, Ábrahám Pál, Széplaki Gábor, Merkely Béla, Gellér László, Nagy Klaudia Vivien
Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, Hungary.
Mater Private Hospital, 69 Eccles St., D07 WKW8 Dublin, Ireland.
Bioengineering (Basel). 2023 Dec 1;10(12):1386. doi: 10.3390/bioengineering10121386.
Ventricular tachycardia (VT) recurrence after catheter ablation remains a concern, emphasizing the need for precise risk assessment. We aimed to use machine learning (ML) to predict 1-month and 1-year VT recurrence following VT ablation.
For 337 patients undergoing VT ablation, we collected 31 parameters including medical history, echocardiography, and procedural data. 17 relevant features were included in the ML-based feature selection, which yielded six and five optimal features for 1-month and 1-year recurrence, respectively. We trained several supervised machine learning models using 10-fold cross-validation for each endpoint.
We observed 1-month VT recurrence was observed in 60 (18%) cases and accurately predicted using our model with an area under the receiver operating curve (AUC) of 0.73. Input features used were hemodynamic instability, incessant VT, ICD shock, left ventricular ejection fraction, TAPSE, and non-inducibility of the clinical VT at the end of the procedure. A separate model was trained for 1-year VT recurrence (observed in 117 (35%) cases) with a mean AUC of 0.71. Selected features were hemodynamic instability, the number of inducible VT morphologies, left ventricular systolic diameter, mitral regurgitation, and ICD shock. For both endpoints, a random forest model displayed the highest performance.
Our ML models effectively predict VT recurrence post-ablation, aiding in identifying high-risk patients and tailoring follow-up strategies.
导管消融术后室性心动过速(VT)复发仍是一个令人担忧的问题,这凸显了精确风险评估的必要性。我们旨在使用机器学习(ML)来预测VT消融术后1个月和1年的VT复发情况。
对于337例接受VT消融的患者,我们收集了31项参数,包括病史、超声心动图和手术数据。基于ML的特征选择纳入了17个相关特征,分别产生了6个和5个用于预测1个月和1年复发的最佳特征。我们使用10折交叉验证为每个终点训练了几个监督机器学习模型。
我们观察到60例(18%)出现了1个月的VT复发,使用我们的模型能够准确预测,受试者工作特征曲线下面积(AUC)为0.73。所使用的输入特征为血流动力学不稳定、持续性VT、植入式心律转复除颤器(ICD)电击、左心室射血分数、三尖瓣环平面收缩期位移(TAPSE)以及手术结束时临床VT不可诱发。针对1年的VT复发(117例(35%)观察到)训练了一个单独的模型,平均AUC为0.71。所选特征为血流动力学不稳定、可诱发VT形态的数量、左心室收缩直径、二尖瓣反流和ICD电击。对于这两个终点,随机森林模型表现出最高的性能。
我们的ML模型有效地预测了消融术后的VT复发,有助于识别高危患者并制定后续随访策略。