National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
Genes (Basel). 2023 Nov 29;14(12):2156. doi: 10.3390/genes14122156.
Whole genome sequencing (WGS) holds significant promise for epidemiological inquiries, as it enables the identification and tracking of pathogenic origins and dissemination through comprehensive genome analysis. This method is widely preferred for investigating outbreaks and monitoring pathogen activity. However, the effective utilization of microbiome sequencing data remains a challenge for clinical and public health experts. Through the National Pathogen Resource Center, we have constructed a dynamic and interactive online analysis platform to facilitate the in-depth analysis and use of pathogen genomic data, by public health and associated professionals, to support infectious disease surveillance framework building and capacity warnings.
The platform was implemented using the Java programming language, and the front-end pages were developed using the VUE framework, following the MVC (Model-View-Controller) pattern to enable interactive service functionalities for front-end data collection and back-end data computation. Cloud computing services were employed to integrate biological information analysis tools for conducting fundamental analysis on sequencing data.
The platform achieved the goal of non-programming analysis, providing an interactive visual interface that allows users to visually obtain results by setting parameters in web pages. Moreover, the platform allows users to export results in various formats to further support their research.
We have established a dynamic and interactive online platform for bioinformatics analysis. By encapsulating the complex background experiments and analysis processes in a cloud-based service platform, the complex background experiments and analysis processes are presented to the end-user in a simple and interactive manner. It facilitates real-time data mining and analysis by allowing users to independently select parameters and generate analysis results at the click of a button, based on their needs, without the need for a programming foundation.
全基因组测序(WGS)在流行病学研究中具有重要意义,因为它能够通过全面的基因组分析来识别和跟踪病原体的起源和传播。这种方法广泛用于调查疫情和监测病原体的活动。然而,有效地利用微生物组测序数据仍然是临床和公共卫生专家面临的挑战。通过国家病原体资源中心,我们构建了一个动态的、交互式的在线分析平台,方便公共卫生和相关专业人员深入分析和利用病原体基因组数据,支持传染病监测框架的构建和能力预警。
该平台使用 Java 编程语言实现,前端页面使用 VUE 框架开发,遵循 MVC(模型-视图-控制器)模式,实现了前端数据采集和后端数据计算的交互服务功能。云计算服务被用来整合生物信息分析工具,对测序数据进行基础分析。
该平台实现了非编程分析的目标,提供了一个交互式的可视化界面,用户可以通过在网页中设置参数来直观地获取结果。此外,该平台还允许用户以各种格式导出结果,以进一步支持他们的研究。
我们建立了一个动态的、交互式的在线生物信息学分析平台。通过将复杂的背景实验和分析过程封装在一个基于云的服务平台中,以简单和交互的方式向最终用户呈现复杂的背景实验和分析过程。它允许用户根据自己的需求独立选择参数并点击按钮生成分析结果,从而实现实时数据挖掘和分析,无需编程基础。