Suppr超能文献

众包图像分割的深度学习:公民科学、付费微任务和游戏化的集成平台。

Crowdsourcing image segmentation for deep learning: integrated platform for citizen science, paid microtask, and gamification.

机构信息

Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Lower Saxony, Germany.

出版信息

Biomed Tech (Berl). 2023 Dec 26;69(3):293-305. doi: 10.1515/bmt-2023-0148. Print 2024 Jun 25.

Abstract

OBJECTIVES

Segmentation is crucial in medical imaging. Deep learning based on convolutional neural networks showed promising results. However, the absence of large-scale datasets and a high degree of inter- and intra-observer variations pose a bottleneck. Crowdsourcing might be an alternative, as many non-experts provide references. We aim to compare different types of crowdsourcing for medical image segmentation.

METHODS

We develop a crowdsourcing platform that integrates citizen science (incentive: participating in the research), paid microtask (incentive: financial reward), and gamification (incentive: entertainment). For evaluation, we choose the use case of sclera segmentation in fundus images as a proof-of-concept and analyze the accuracy of crowdsourced masks and the generalization of learning models trained with crowdsourced masks.

RESULTS

The developed platform is suited for the different types of crowdsourcing and offers an easy and intuitive way to implement crowdsourcing studies. Regarding the proof-of-concept study, citizen science, paid microtask, and gamification yield a median F-score of 82.2, 69.4, and 69.3 % compared to expert-labeled ground truth, respectively. Generating consensus masks improves the gamification masks (78.3 %). Despite the small training data (50 images), deep learning reaches median F-scores of 80.0, 73.5, and 76.5 % for citizen science, paid microtask, and gamification, respectively, indicating sufficient generalizability.

CONCLUSIONS

As the platform has proven useful, we aim to make it available as open-source software for other researchers.

摘要

目的

医学成像中的分割至关重要。基于卷积神经网络的深度学习取得了有前景的结果。然而,缺乏大规模数据集和高度的观察者内和观察者间差异仍然是一个瓶颈。众包可能是一种替代方法,因为许多非专业人士提供参考。我们旨在比较医学图像分割的不同类型的众包。

方法

我们开发了一个众包平台,集成了公民科学(激励措施:参与研究)、付费微任务(激励措施:经济奖励)和游戏化(激励措施:娱乐)。为了评估,我们选择了眼底图像巩膜分割作为概念验证,并分析了众包掩模的准确性和使用众包掩模训练的学习模型的泛化能力。

结果

所开发的平台适合不同类型的众包,并提供了一种简单直观的方式来实现众包研究。就概念验证研究而言,公民科学、付费微任务和游戏化分别获得了 82.2%、69.4%和 69.3%的中位数 F 分数,与专家标记的地面实况相比。生成共识掩模可以提高游戏化掩模的性能(78.3%)。尽管训练数据量较小(50 张图像),深度学习对于公民科学、付费微任务和游戏化,分别达到了 80.0%、73.5%和 76.5%的中位数 F 分数,表明具有足够的泛化能力。

结论

由于该平台已被证明是有用的,我们旨在将其作为开源软件提供给其他研究人员。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验