Jazmin Hidalgo Melisa, Emilio Gaiad José, Casimiro Goicoechea Héctor, Mendoza Alberto, Pérez-Rodríguez Michael, Gerardo Pellerano Roberto
Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), UNNE-CONICET, Facultad de Ciencias Exactas y Naturales y Agrimensura, Ave. Libertad 5400, Corrientes 3400, Argentina.
Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe 3000, Argentina.
Food Chem X. 2023 Dec 1;20:101040. doi: 10.1016/j.fochx.2023.101040. eCollection 2023 Dec 30.
Given rising traders and consumers concerns, the global food industry is increasingly demanding authentic and traceable products. Consequently, there is a heightened focus on verifying geographical authenticity as food quality assurance. In this work, we assessed pattern recognition approaches based on elemental predictors to discern the provenance of mandarin juices from three distinct citrus-producing zones located in the Northeast region of Argentina. A total of 202 samples originating from two cultivars were prepared through microwave-assisted acid digestion and analyzed by microwave plasma atomic emission spectroscopy (MP-AES). Later, we applied linear discriminant analysis (LDA), k-nearest neighbor (k-NN), support vector machine (SVM), and random forest (RF) to the element data obtained. SVM accomplished the best classification performance with a 95.1% success rate, for which it was selected for citrus samples authentication. The proposed method highlights the capability of mineral profiles in accurately identifying the genuine origin of mandarin juices. By implementing this model in the food supply chain, it can prevent mislabeling fraud, thereby contributing to consumer protection.
鉴于贸易商和消费者日益增长的担忧,全球食品行业对正宗且可追溯的产品需求日益增加。因此,作为食品质量保证,对地理真实性的核实受到了更多关注。在这项工作中,我们评估了基于元素预测器的模式识别方法,以辨别来自阿根廷东北部三个不同柑橘产区的柑橘汁的产地。通过微波辅助酸消解制备了总共202个来自两个品种的样品,并通过微波等离子体原子发射光谱法(MP-AES)进行分析。随后,我们将线性判别分析(LDA)、k近邻(k-NN)、支持向量机(SVM)和随机森林(RF)应用于获得的元素数据。支持向量机取得了最佳分类性能,成功率为95.1%,因此被选用于柑橘样品的认证。所提出的方法突出了矿物质谱在准确识别柑橘汁真正产地方面的能力。通过在食品供应链中实施该模型,可以防止错误标签欺诈,从而有助于保护消费者。