Tekseth Kim Robert, Mirzaei Fazel, Lukic Bratislav, Chattopadhyay Basab, Breiby Dag Werner
Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
ESRF - The European Synchrotron, Grenoble 38043, France.
Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2305890120. doi: 10.1073/pnas.2305890120. Epub 2023 Dec 26.
Slow multiphase flow in porous media is intriguing because its underlying dynamics is almost deterministic, yet depends on a hierarchy of spatiotemporal processes. There has been great progress in the experimental study of such multiphase flows, but three-dimensional (3D) microscopy methods probing the pore-scale fluid dynamics with millisecond resolution have been lacking. Yet, it is precisely at these length and time scales that the crucial pore-filling events known as Haines jumps take place. Here, we report four-dimensional (4D) (3D + time) observations of multiphase flow in a consolidated porous medium as captured in situ by stroboscopic X-ray micro-tomography. With a total duration of 6.5 s and 2 kHz frame rate, our experiments provide unprecedented access to the multiscale liquid dynamics. Our tomography strategy relies on the fact that Haines jumps, although irregularly spaced in time, are almost deterministic, and therefore repeatable during imbibition-drainage cycling. We studied the time-dependent flow pattern in a porous medium consisting of sintered glass shards. Exploiting the repeatability, we could combine the radiographic projections recorded under different angles during successive cycles into a 3D movie, allowing us to reconstruct pore-scale events, such as Haines jumps, with a spatiotemporal resolution that is two orders of magnitude higher than was hitherto possible. This high resolution allows us to explore the detailed interfacial dynamics during drainage, including fluid-front displacements and velocities. Our experimental approach opens the way to the study of fast, yet deterministic mesoscopic processes also other than flow in porous media.
多孔介质中的缓慢多相流很有趣,因为其潜在动力学几乎是确定性的,但取决于一系列时空过程。在这种多相流的实验研究方面已经取得了很大进展,但缺乏能够以毫秒分辨率探测孔隙尺度流体动力学的三维(3D)显微镜方法。然而,正是在这些长度和时间尺度上发生了被称为海恩斯跳跃的关键孔隙填充事件。在这里,我们报告了通过频闪X射线显微断层扫描原位捕获的固结多孔介质中多相流的四维(4D)(3D + 时间)观测结果。我们的实验总时长为6.5秒,帧率为2 kHz,提供了前所未有的对多尺度液体动力学的观测。我们的断层扫描策略基于这样一个事实,即海恩斯跳跃虽然在时间上间隔不规则,但几乎是确定性的,因此在吸液 - 排水循环过程中是可重复的。我们研究了由烧结玻璃碎片组成的多孔介质中随时间变化的流动模式。利用这种可重复性,我们可以将连续循环中在不同角度记录的射线投影组合成一个3D电影,使我们能够以比以往高两个数量级的时空分辨率重建孔隙尺度的事件,如海恩斯跳跃。这种高分辨率使我们能够探索排水过程中的详细界面动力学,包括流体前沿的位移和速度。我们的实验方法为研究除多孔介质中的流动之外的快速但确定性的介观过程开辟了道路。