Suppr超能文献

机器和深度学习主导传感器、信号和成像信息学的最新创新。

Machine and Deep Learning Dominate Recent Innovations in Sensors, Signals and Imaging Informatics.

机构信息

Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Austria.

Medical Imaging Computing Lab (MICLab), School of Electrical and Computer Engineering University of Campinas, Brazil.

出版信息

Yearb Med Inform. 2023 Aug;32(1):282-285. doi: 10.1055/s-0043-1768743. Epub 2023 Dec 26.

Abstract

OBJECTIVES

This review presents research papers highlighting notable developments and trends in sensors, signals, and imaging informatics (SSII) in 2022.

METHOD

We performed a bibliographic search in PubMed combining Medical Subject Heading (MeSH) terms and keywords to create particular queries for sensors, signals, and imaging informatics. Only papers published in journals containing greater than three articles in the search query were considered. Using a three-point Likert scale (1 = not include, 2 = perhaps include, 3 = include), we reviewed the titles and abstracts of all database results. Only articles that scored three times Likert scale 3, or two times Likert scale 3, and one time Likert scale 2 were considered for full paper review. On this pre-selection, only papers with a total of at least eight points of the three section co-editors were considered for external review. Based on the external reviewers, we selected the top two papers representing significant research in SSII.

RESULTS

Among the 469 returned papers published in 2022 in the various areas of SSII, 90, 31, and 348 papers for sensors, signals, and imaging informatics, and then, the full review process selected the two best papers. From the 469 papers, the section co-editors identified 29 candidate papers with at least 8 Likert points in total, of which 9 were nominated as the best contributions after a full paper assessment. Five external reviewers evaluated the nominated papers, and the two highest-scoring papers were selected based on the overall scores of all external reviewers. A consensus of the International Medical Informatics Association (IMIA) Yearbook editorial board finally approved the nominated papers. Machine and deep learning-based techniques continue to be the dominant theme in this field.

CONCLUSIONS

Sensors, signals, and imaging informatics is a dynamic field of intensive research with increasing practical applications to support medical decision-making on a personalized basis.

摘要

目的

本综述介绍了 2022 年传感器、信号和成像信息学(SSII)领域的研究论文,突出了该领域的重要发展和趋势。

方法

我们在 PubMed 中进行了文献检索,结合了医学主题词(MeSH)和关键词,为传感器、信号和成像信息学创建了特定的查询。只有在检索查询中包含大于三篇文章的期刊上发表的论文才被考虑。我们使用三点李克特量表(1=不包括,2=可能包括,3=包括)对所有数据库结果的标题和摘要进行了回顾。只有得分三次李克特量表 3,或两次李克特量表 3 和一次李克特量表 2 的文章才被考虑进行全文审查。在此预筛选中,只有总分至少达到三位审稿人三个部分的 8 分的论文才会被考虑进行外部评审。根据外部审稿人的意见,我们选择了两篇代表 SSII 领域重要研究的最佳论文。

结果

在 2022 年 SSII 各个领域发表的 469 篇论文中,有 90 篇、31 篇和 348 篇分别涉及传感器、信号和成像信息学,然后通过全面审查过程选择了两篇最佳论文。在 469 篇论文中,各部分编辑共确定了 29 篇候选论文,这些论文的总得分至少为 8 分,其中 9 篇在全面评估后被提名为最佳论文。5 位外部审稿人对提名论文进行了评估,根据所有外部审稿人的总分,选出了得分最高的两篇论文。国际医学信息协会(IMIA)年鉴编辑委员会的共识最终批准了提名论文。基于机器和深度学习的技术仍然是该领域的主导主题。

结论

传感器、信号和成像信息学是一个充满活力的研究领域,越来越多的实际应用支持基于个性化的医疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc42/10751153/54e73cbe276e/10-1055-s-0043-1768743-tbaumgartner-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验