Çalışkan Minal, Tazaki Koichi
Translational Science Department, Precision Medicine Function, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States.
Translational Science Department I, Precision Medicine Function, Daiichi Sankyo, Tokyo, Japan.
Front Oncol. 2023 Dec 11;13:1260374. doi: 10.3389/fonc.2023.1260374. eCollection 2023.
Lung cancer is the leading cause of cancer deaths among both men and women, representing approximately 25% of cancer fatalities each year. The treatment landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the progress made in biomarker-driven targeted therapies. While advancements in targeted treatments have improved survival rates for NSCLC patients with actionable biomarkers, long-term survival remains low, with an overall 5-year relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML) algorithms have shown promise in biomarker discovery, yet NSCLC-specific studies capturing the clinical challenges targeted and emerging patterns identified using AI/ML approaches are lacking. Here, we employed a text-mining approach and identified 215 studies that reported potential biomarkers of NSCLC using AI/ML algorithms. We catalogued these studies with respect to BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker discovery. We anticipate that our comprehensive review will contribute to the current understanding of AI/ML advances in NSCLC biomarker research and provide an important catalogue that may facilitate clinical adoption of AI/ML-derived biomarkers.
肺癌是男性和女性癌症死亡的主要原因,约占每年癌症死亡人数的25%。由于生物标志物驱动的靶向治疗取得进展,非小细胞肺癌(NSCLC)的治疗格局正在迅速演变。虽然靶向治疗的进步提高了具有可操作生物标志物的NSCLC患者的生存率,但长期生存率仍然很低,总体5年相对生存率低于20%。人工智能/机器学习(AI/ML)算法在生物标志物发现方面显示出前景,但缺乏针对NSCLC的研究来捕捉使用AI/ML方法确定的临床挑战和新出现的模式。在此,我们采用文本挖掘方法,确定了215项使用AI/ML算法报告NSCLC潜在生物标志物的研究。我们根据BEST(生物标志物、终点和其他工具)生物标志物亚型对这些研究进行了分类,并总结了AI/ML驱动NSCLC生物标志物发现中的新出现模式和趋势。我们预计我们的全面综述将有助于当前对NSCLC生物标志物研究中AI/ML进展的理解,并提供一个重要的目录,可能有助于临床采用AI/ML衍生的生物标志物。