Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain.
Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain.
Int J Food Microbiol. 2024 Feb 2;411:110547. doi: 10.1016/j.ijfoodmicro.2023.110547. Epub 2023 Dec 21.
Some lactic acid bacteria (LAB) have the ability to synthesize riboflavin, a trait linked to the presence of ribG, ribB, ribA and ribH genes located in the rib operon. Previous screening of riboflavin producers identified several LAB strains belonging to different species with this ability, but none of them surpassed 0.25 mg/L production of the vitamin. In this study, we explored two strategies to obtain riboflavin-overproducing strains: by roseoflavin selection of mutants, and by the transformation of selected strains with plasmids pNZ:TuR.rib or pNZ:TuB.rib containing the genes ribG, ribB, ribA and ribH from Lactococcus cremoris MG1363. The resulting riboflavin-overproducing strains were able to produce yields between 0.5 and 6 mg/L in culture media and several of them were selected for the fermentation of soy beverages. Riboflavin in bio-enriched soy beverages was evaluated by direct fluorescence measurement and high-performance liquid chromatography-fluorescence analysis. Soy beverages fermented with the recombinant strains Lactococcus cremoris ESI 277 pNZ:TuB.rib and Lactococcus lactis INIA 12 pNZ:TuR.rib showed the highest riboflavin yields (>5 mg/L) after 24 h fermentation. On the other hand, roseoflavin-resistant mutant Limosilactobacillus fermentum INIA P143R2 was able to enrich fermented soy beverages with 1.5 mg/L riboflavin. Riboflavin-overproducing LAB strains constitute a good option for riboflavin enrichment of soy beverages by fermentation and the commercialization of such beverages could be very useful to prevent riboflavin deficiency.
一些乳酸菌(LAB)具有合成核黄素的能力,这种特性与位于核糖操纵子中的 ribG、ribB、ribA 和 ribH 基因的存在有关。先前对核黄素生产者的筛选确定了具有这种能力的几种属于不同物种的 LAB 菌株,但它们都没有超过 0.25mg/L 的维生素产量。在这项研究中,我们探索了两种获得核黄素高产菌株的策略:通过玫瑰黄素选择突变体,以及通过含有乳球菌 MG1363 的 ribG、ribB、ribA 和 ribH 基因的质粒 pNZ:TuR.rib 或 pNZ:TuB.rib 转化选定的菌株。产生的核黄素高产菌株能够在培养基中产生 0.5 至 6mg/L 之间的产量,其中一些菌株被选择用于发酵豆浆饮料。通过直接荧光测量和高效液相色谱-荧光分析评估生物强化豆浆饮料中的核黄素。用重组乳球菌 cremoris ESI 277 pNZ:TuB.rib 和乳球菌 lactis INIA 12 pNZ:TuR.rib 发酵的豆浆饮料在 24 小时发酵后显示出最高的核黄素产量(>5mg/L)。另一方面,玫瑰黄素抗性突变体 Limosilactobacillus fermentum INIA P143R2 能够将发酵豆浆饮料中的核黄素富集到 1.5mg/L。核黄素高产 LAB 菌株是通过发酵强化豆浆饮料核黄素的良好选择,此类饮料的商业化对于预防核黄素缺乏症非常有用。