Suppr超能文献

比较非参数估计复发事件预期数量的方法。

Comparison of nonparametric estimators of the expected number of recurrent events.

机构信息

Institute of Statistics, Ulm University, Ulm, Germany.

Boehringer Ingelheim Pharma GmbH & Go. KG, Biberach, Germany.

出版信息

Pharm Stat. 2024 May-Jun;23(3):339-369. doi: 10.1002/pst.2356. Epub 2023 Dec 28.

Abstract

We compare the performance of nonparametric estimators for the mean number of recurrent events and provide a systematic overview for different recurrent event settings. The mean number of recurrent events is an easily interpreted marginal feature often used for treatment comparisons in clinical trials. Incomplete observations, dependencies between successive events, terminating events acting as competing risk, or gaps between at risk periods complicate the estimation. We use survival multistate models to represent different complex recurrent event situations, profiting from recent advances in nonparametric estimation for non-Markov multistate models, and explain several estimators by using multistate intensity processes, including the common Nelson-Aalen-type estimators with and without competing mortality. In addition to building on estimation of state occupation probabilities in non-Markov models, we consider a simple extension of the Nelson-Aalen estimator by allowing for dependence on the number of prior recurrent events. We pay particular attention to the assumptions required for the censoring mechanism, one issue being that some settings require the censoring process to be entirely unrelated while others allow for state-dependent or event-driven censoring. We conducted extensive simulation studies to compare the estimators in various complex situations with recurrent events. Our practical example deals with recurrent chronic obstructive pulmonary disease exacerbations in a clinical study, which will also be used to illustrate two-sample-inference using resampling.

摘要

我们比较了用于估计复发事件平均数量的非参数估计量,并为不同的复发事件设置提供了系统的概述。复发事件的平均数量是一个易于解释的边缘特征,常用于临床试验中的治疗比较。不完全观测、连续事件之间的相关性、作为竞争风险的终止事件或风险期之间的差距使估计变得复杂。我们使用生存多状态模型来表示不同的复杂复发事件情况,利用非参数估计在非马尔可夫多状态模型方面的最新进展,并通过使用多状态强度过程来解释几种估计量,包括带有和不带有竞争死亡率的常见 Nelson-Aalen 类型估计量。除了建立在非马尔可夫模型中状态占用概率的估计基础上,我们还考虑通过允许依赖于先前复发事件的数量来扩展 Nelson-Aalen 估计量。我们特别关注对删失机制的假设要求,其中一个问题是,某些设置要求删失过程完全无关,而其他设置允许状态相关或事件驱动的删失。我们进行了广泛的模拟研究,以比较在各种具有复发事件的复杂情况下的估计量。我们的实际例子涉及一项临床研究中复发性慢性阻塞性肺病恶化的情况,我们还将使用重采样来演示两样本推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验