Suppr超能文献

人工智能:检测茎突延长的可靠工具。

Artificial Intelligence: A Reliable Tool to Detect the Elongation of the Styloid Process.

作者信息

Jeevitha S Jebarani, Kumar S Lokesh, Yadalam Pradeep Kumar

机构信息

Department of Oral Medicine, Radiology, and Special Care Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND.

Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND.

出版信息

Cureus. 2023 Nov 28;15(11):e49541. doi: 10.7759/cureus.49541. eCollection 2023 Nov.

Abstract

Background Eagle's syndrome is characterized by the anomalous elongation of the styloid process. This condition is usually identified through the manual evaluation of orthopantomogram (OPG) images, which is time-consuming and can have interobserver variability. The application of Artificial intelligence (AI) in radiology is gaining importance and interest in recent years. The application of AI in detecting styloid process elongation is less explored, advocating for research in the same arena. Aim and objectives The study aimed to evaluate the accuracy of artificial intelligence in detecting styloid process elongation in digital OPGs and to compare the performance of the three different AI algorithms with that of the manual radiographic evaluation by the radiologist. Materials and methods A total of 400 digital OPGs were screened, and linear measurements of the styloid process length (ImageJ software (National Institute of Health, Maryland, USA)) were done for the identification of styloid process elongation by a single calibrated observer to finally include a processed image dataset including 169 images of the elongated styloid process and 200 images of the normal styloid process. A machine learning approach was used to detect the styloid process elongation using the three different AI models: logistic regression, neural network, and Naïve Bayes algorithms in Orange software (University of Ljubljana, Slovenia). Performance evaluation was done using the accuracy, sensitivity, specificity, precision, recall, F1 score, and AUC-ROC (area under the receiver operating characteristic) curve. Results Logistic regression and neural network algorithms depicted the highest accuracy of 100% with no false positives or false negatives, securing a score of 1.000 for all the metrics. However, the Naïve Bayes model demonstrated a fairly considerable accuracy, classifying 49 false positive images and 59 false negative images with an AUC (area under the curve) score of 78 %. Nevertheless, it performed better than random guessing. Conclusion Logistic regression and neural network algorithms accurately detected styloid process elongation similar to that of manual radiographic evaluation. The Naïve Bayes algorithm did not perform an accurate classification yet performed better than random guessing. AI holds a promising scope for its application in automatically detecting styloid process elongation in digital OPGs.

摘要

背景

鹰综合征的特征是茎突异常延长。这种情况通常通过全景曲面断层片(OPG)图像的人工评估来确定,这既耗时,又可能存在观察者间的差异。近年来,人工智能(AI)在放射学中的应用越来越重要且受到关注。AI在检测茎突延长方面的应用探索较少,因此提倡在这一领域开展研究。目的:本研究旨在评估人工智能在检测数字化OPG中茎突延长的准确性,并将三种不同AI算法的性能与放射科医生的手动X线评估进行比较。材料与方法:共筛选了400张数字化OPG,由一名经过校准的观察者使用ImageJ软件(美国国立卫生研究院,马里兰州)对茎突长度进行线性测量,以确定茎突延长情况,最终得到一个处理后的图像数据集,其中包括169张茎突延长的图像和200张正常茎突的图像。使用机器学习方法,在Orange软件(斯洛文尼亚卢布尔雅那大学)中使用三种不同的AI模型(逻辑回归、神经网络和朴素贝叶斯算法)检测茎突延长。使用准确性、敏感性、特异性、精确性、召回率、F1分数和AUC-ROC(受试者操作特征曲线下面积)曲线进行性能评估。结果:逻辑回归和神经网络算法的准确率最高,均为100%,无假阳性或假阴性,所有指标的得分均为1.000。然而,朴素贝叶斯模型的准确率也相当可观,将49张图像分类为假阳性,59张图像分类为假阴性,曲线下面积(AUC)得分为78%。尽管如此,其表现仍优于随机猜测。结论:逻辑回归和神经网络算法能够准确检测茎突延长,与手动X线评估效果相似。朴素贝叶斯算法虽然没有进行准确分类,但表现优于随机猜测。AI在自动检测数字化OPG中的茎突延长方面具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/10753149/81fccb62722d/cureus-0015-00000049541-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验