Chew Bradley S, Trinh Nhi N, Koch Dylan T, Borras Eva, LeVasseur Michael K, Simms Leslie A, McCartney Mitchell M, Gibson Patrick, Kenyon Nicholas J, Davis Cristina E
Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California Davis, Davis, California 95616, United States.
UC Davis Lung Center, One Shields Avenue, University of California Davis, Davis, California 95616, United States.
Anal Chem. 2024 Jan 9;96(1):364-372. doi: 10.1021/acs.analchem.3c04394. Epub 2023 Dec 29.
We have developed a statistical model-based approach to the quality analysis (QA) and quality control (QC) of a gas micro pre-concentrator chip (μPC) performance when manufactured at scale for chemical and biochemical analysis of volatile organic compounds (VOCs). To test the proposed model, a medium-sized university-led production batch of 30 wafers of chips were subjected to rigorous chemical performance testing. We quantitatively report the outcomes of each manufacturing process step leading to the final functional chemical sensor chip. We implemented a principal component analysis (PCA) model to score individual chip chemical performance, and we observed that the first two principal components represent 74.28% of chemical testing variance with 111 of 118 viable chips falling into the 95% confidence interval. Chemical performance scores and chip manufacturing data were analyzed using a multivariate regression model to determine the most influential manufacturing parameters and steps. In our analysis, we find the amount of sorbent mass present in the chip (variable importance score = 2.6) and heater and the RTD resistance values (variable importance score = 1.1) to be the manufacturing parameters with the greatest impact on chemical performance. Other non-obvious latent manufacturing parameters also had quantified influence. Statistical distributions for each manufacturing step will allow future large-scale production runs to be statistically sampled during production to perform QA/QC in a real-time environment. We report this study as the first data-driven, model-based production of a microfabricated chemical sensor.
我们开发了一种基于统计模型的方法,用于对气体微预浓缩器芯片(μPC)在大规模制造时用于挥发性有机化合物(VOCs)化学和生化分析的性能进行质量分析(QA)和质量控制(QC)。为了测试所提出的模型,由一所中型大学牵头生产的一批30片芯片晶圆接受了严格的化学性能测试。我们定量报告了导致最终功能性化学传感器芯片的每个制造工艺步骤的结果。我们实施了主成分分析(PCA)模型来对单个芯片的化学性能进行评分,并且我们观察到前两个主成分代表了化学测试方差的74.28%,118个可用芯片中的111个落入了95%置信区间。使用多元回归模型分析化学性能得分和芯片制造数据,以确定最具影响力的制造参数和步骤。在我们的分析中,我们发现芯片中吸附剂质量的量(变量重要性得分 = 2.6)以及加热器和电阻温度探测器(RTD)的电阻值(变量重要性得分 = 1.1)是对化学性能影响最大的制造参数。其他不明显的潜在制造参数也有量化影响。每个制造步骤的统计分布将使未来的大规模生产运行能够在生产过程中进行统计抽样,以便在实时环境中执行QA/QC。我们将这项研究报告为首次基于数据驱动、模型的微制造化学传感器生产。