Salem Amr R, Bryant W Bart, Doja Jaser, Griffin Susan H, Shi Xiaofan, Han Weihong, Su Yunchao, Verin Alexander D, Miano Joseph M
Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America.
Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America.
Vascul Pharmacol. 2024 Mar;154:107269. doi: 10.1016/j.vph.2023.107269. Epub 2023 Dec 27.
CRISPR editing involves double-strand breaks in DNA with attending insertions/deletions (indels) that may result in embryonic lethality in mice. The prime editing (PE) platform uses a prime editing guide RNA (pegRNA) and a Cas9 nickase fused to a modified reverse transcriptase to precisely introduce nucleotide substitutions or small indels without the unintended editing associated with DNA double-strand breaks. Recently, engineered pegRNAs (epegRNAs), with a 3'-extension that shields the primer-binding site of the pegRNA from nucleolytic attack, demonstrated superior activity over conventional pegRNAs in cultured cells. Here, we show the inability of three-component CRISPR or conventional PE to incorporate a nonsynonymous substitution in the Capn2 gene, expected to disrupt a phosphorylation site (S50A) in CAPN2. In contrast, an epegRNA with the same protospacer correctly installed the desired edit in two founder mice, as evidenced by robust genotyping assays for the detection of subtle nucleotide substitutions. Long-read sequencing demonstrated sequence fidelity around the edited site as well as top-ranked distal off-target sites. Western blotting and histological analysis of lipopolysaccharide-treated lung tissue revealed a decrease in phosphorylation of CAPN2 and notable alleviation of inflammation, respectively. These results demonstrate the first successful use of an epegRNA for germline transmission in an animal model and provide a solution to targeting essential developmental genes that otherwise may be challenging to edit.
CRISPR编辑涉及DNA双链断裂以及随之而来的插入/缺失(indels),这可能导致小鼠胚胎致死。碱基编辑(PE)平台使用碱基编辑引导RNA(pegRNA)和与修饰逆转录酶融合的Cas9切口酶,以精确引入核苷酸替换或小的插入/缺失,而不会产生与DNA双链断裂相关的意外编辑。最近,具有3'延伸的工程化pegRNA(epegRNA)可保护pegRNA的引物结合位点免受核酸酶攻击,在培养细胞中显示出比传统pegRNA更高的活性。在这里,我们展示了三元CRISPR或传统PE无法在Capn2基因中引入非同义替换,预期该替换会破坏CAPN2中的一个磷酸化位点(S50A)。相比之下,具有相同间隔序列的epegRNA在两只奠基小鼠中正确安装了所需的编辑,这通过用于检测微小核苷酸替换的强大基因分型分析得到了证明。长读长测序显示了编辑位点周围以及排名靠前的远端脱靶位点的序列保真度。对脂多糖处理的肺组织进行的蛋白质免疫印迹和组织学分析分别显示CAPN2磷酸化减少和炎症明显减轻。这些结果证明了epegRNA首次成功用于动物模型中的种系传递,并为靶向否则可能难以编辑的必需发育基因提供了解决方案。