Suppr超能文献

使用工程化pegRNA对小鼠进行碱基编辑。

Prime editing in mice with an engineered pegRNA.

作者信息

Salem Amr R, Bryant W Bart, Doja Jaser, Griffin Susan H, Shi Xiaofan, Han Weihong, Su Yunchao, Verin Alexander D, Miano Joseph M

机构信息

Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America.

Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America.

出版信息

Vascul Pharmacol. 2024 Mar;154:107269. doi: 10.1016/j.vph.2023.107269. Epub 2023 Dec 27.

Abstract

CRISPR editing involves double-strand breaks in DNA with attending insertions/deletions (indels) that may result in embryonic lethality in mice. The prime editing (PE) platform uses a prime editing guide RNA (pegRNA) and a Cas9 nickase fused to a modified reverse transcriptase to precisely introduce nucleotide substitutions or small indels without the unintended editing associated with DNA double-strand breaks. Recently, engineered pegRNAs (epegRNAs), with a 3'-extension that shields the primer-binding site of the pegRNA from nucleolytic attack, demonstrated superior activity over conventional pegRNAs in cultured cells. Here, we show the inability of three-component CRISPR or conventional PE to incorporate a nonsynonymous substitution in the Capn2 gene, expected to disrupt a phosphorylation site (S50A) in CAPN2. In contrast, an epegRNA with the same protospacer correctly installed the desired edit in two founder mice, as evidenced by robust genotyping assays for the detection of subtle nucleotide substitutions. Long-read sequencing demonstrated sequence fidelity around the edited site as well as top-ranked distal off-target sites. Western blotting and histological analysis of lipopolysaccharide-treated lung tissue revealed a decrease in phosphorylation of CAPN2 and notable alleviation of inflammation, respectively. These results demonstrate the first successful use of an epegRNA for germline transmission in an animal model and provide a solution to targeting essential developmental genes that otherwise may be challenging to edit.

摘要

CRISPR编辑涉及DNA双链断裂以及随之而来的插入/缺失(indels),这可能导致小鼠胚胎致死。碱基编辑(PE)平台使用碱基编辑引导RNA(pegRNA)和与修饰逆转录酶融合的Cas9切口酶,以精确引入核苷酸替换或小的插入/缺失,而不会产生与DNA双链断裂相关的意外编辑。最近,具有3'延伸的工程化pegRNA(epegRNA)可保护pegRNA的引物结合位点免受核酸酶攻击,在培养细胞中显示出比传统pegRNA更高的活性。在这里,我们展示了三元CRISPR或传统PE无法在Capn2基因中引入非同义替换,预期该替换会破坏CAPN2中的一个磷酸化位点(S50A)。相比之下,具有相同间隔序列的epegRNA在两只奠基小鼠中正确安装了所需的编辑,这通过用于检测微小核苷酸替换的强大基因分型分析得到了证明。长读长测序显示了编辑位点周围以及排名靠前的远端脱靶位点的序列保真度。对脂多糖处理的肺组织进行的蛋白质免疫印迹和组织学分析分别显示CAPN2磷酸化减少和炎症明显减轻。这些结果证明了epegRNA首次成功用于动物模型中的种系传递,并为靶向否则可能难以编辑的必需发育基因提供了解决方案。

相似文献

1
Prime editing in mice with an engineered pegRNA.
Vascul Pharmacol. 2024 Mar;154:107269. doi: 10.1016/j.vph.2023.107269. Epub 2023 Dec 27.
2
Engineered pegRNAs improve prime editing efficiency.
Nat Biotechnol. 2022 Mar;40(3):402-410. doi: 10.1038/s41587-021-01039-7. Epub 2021 Oct 4.
3
[Prime-Editing Methods and pegRNA Design Programs].
Mol Biol (Mosk). 2024 Jan-Feb;58(1):22-39.
6
Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions.
Elife. 2024 Jun 7;12:RP90948. doi: 10.7554/eLife.90948.
7
Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs).
Nat Protoc. 2023 Mar;18(3):831-853. doi: 10.1038/s41596-022-00773-9. Epub 2022 Nov 25.
8
Prime Editing Guide RNA Design Automation Using PINE-CONE.
ACS Synth Biol. 2021 Feb 19;10(2):422-427. doi: 10.1021/acssynbio.0c00445. Epub 2021 Jan 19.
9
Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells.
Nucleic Acids Res. 2022 Jun 24;50(11):6423-6434. doi: 10.1093/nar/gkac506.
10
Designing and executing prime editing experiments in mammalian cells.
Nat Protoc. 2022 Nov;17(11):2431-2468. doi: 10.1038/s41596-022-00724-4. Epub 2022 Aug 8.

引用本文的文献

1
Emerging applications of gene editing technologies for the development of climate-resilient crops.
Front Genome Ed. 2025 Mar 10;7:1524767. doi: 10.3389/fgeed.2025.1524767. eCollection 2025.

本文引用的文献

1
Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.
Nat Biotechnol. 2023 Apr;41(4):500-512. doi: 10.1038/s41587-022-01527-4. Epub 2022 Nov 24.
2
Engineered pegRNAs improve prime editing efficiency.
Nat Biotechnol. 2022 Mar;40(3):402-410. doi: 10.1038/s41587-021-01039-7. Epub 2021 Oct 4.
3
CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells.
Nat Biotechnol. 2022 Feb;40(2):189-193. doi: 10.1038/s41587-021-00901-y. Epub 2021 Apr 29.
5
Precise genome engineering in using prime editing.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2021996118.
6
Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
Nat Biotechnol. 2020 Jul;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub 2020 Jun 22.
7
Efficient generation of mouse models with the prime editing system.
Cell Discov. 2020 Apr 28;6:27. doi: 10.1038/s41421-020-0165-z. eCollection 2020.
8
Molecular Dynamics of Lipopolysaccharide-Induced Lung Injury in Rodents.
Front Physiol. 2020 Feb 5;11:36. doi: 10.3389/fphys.2020.00036. eCollection 2020.
9
Search-and-replace genome editing without double-strand breaks or donor DNA.
Nature. 2019 Dec;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub 2019 Oct 21.
10
Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics. 2018 Sep 15;34(18):3094-3100. doi: 10.1093/bioinformatics/bty191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验