Suppr超能文献

深度质量评分:通过深度学习图谱-模型拟合分数对冷冻电镜密度图进行局部质量评估。

DeepQs: Local quality assessment of cryo-EM density map by deep learning map-model fit score.

作者信息

Feng Ming-Feng, Chen Yu-Xuan, Shen Hong-Bin

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.

出版信息

J Struct Biol. 2024 Mar;216(1):108059. doi: 10.1016/j.jsb.2023.108059. Epub 2023 Dec 30.

Abstract

Cryogenic electron microscopy maps are valuable for determining macromolecule structures. A proper quality assessment method is essential for cryo-EM map selection or revision. This article presents DeepQs, a novel approach to estimate local quality for 3D cryo-EM density maps, using a deep-learning algorithm based on map-model fit score. DeepQs is a parameter-free method for users and incorporates structural information between map and its related atomic model into well-trained models by deep learning. More specifically, the DeepQs approach leverages the interplay between map and atomic model through predefined map-model fit score, Q-score. DeepQs can get close results to the ground truth map-model fit scores with only cryo-EM map as input. In experiments, DeepQs demonstrates the lowest root mean square error with standard method Fourier shell correlation metric and high correlation with map-model fit score, Q-score, when compared with other local quality estimation methods in high-resolution dataset (<=5 Å). DeepQs can also be applied to evaluate the quality of the post-processed maps. In both cases, DeepQs runs faster by using GPU acceleration. Our program is available at http://www.csbio.sjtu.edu.cn/bioinf/DeepQs for academic use.

摘要

低温电子显微镜图谱对于确定大分子结构很有价值。一种合适的质量评估方法对于冷冻电镜图谱的选择或修订至关重要。本文介绍了DeepQs,这是一种使用基于图谱-模型拟合分数的深度学习算法来估计三维冷冻电镜密度图谱局部质量的新方法。对于用户来说,DeepQs是一种无参数方法,它通过深度学习将图谱与其相关原子模型之间的结构信息整合到训练良好的模型中。更具体地说,DeepQs方法通过预定义的图谱-模型拟合分数Q分数来利用图谱和原子模型之间的相互作用。仅以冷冻电镜图谱作为输入,DeepQs就能得到与真实图谱-模型拟合分数相近的结果。在实验中,与高分辨率数据集(<=5 Å)中的其他局部质量估计方法相比,DeepQs在标准方法傅里叶壳层相关度量下显示出最低的均方根误差,并且与图谱-模型拟合分数Q分数具有高度相关性。DeepQs还可用于评估后处理图谱的质量。在这两种情况下,使用GPU加速时DeepQs运行得更快。我们的程序可在http://www.csbio.sjtu.edu.cn/bioinf/DeepQs获取,供学术使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验